Ultra-sensitiv dank quantenmechanischer Verschränkung

  • 05. July 2017

Halbleiter-Quantenpunkte unterbieten das Standard-Quanten­limit der optischen Inter­fero­metrie.

Verschränkte Lichtzustände ermöglichen die Erhöhung der Sensiti­vität in der optischen Inter­fero­metrie. Dafür sind pfad­ver­schränkte Photonen­zustände in zeit­lich wohl defi­nierten Pulsen nötig. Bislang war die Erzeugung solcher Zustände jedoch nur begrenzt und per Zufall möglich. Forscher der Uni Stutt­gart haben jetzt gezeigt, wie man mit Hilfe eines Halb­leiter-Quanten­punkts verschränkte Photonen­zustände determi­nistisch erzeugen und damit die für klas­sisches Licht geltende univer­selle Empfind­lich­keits­schranke unter­bieten kann.

Strahlteiler

Abb.: Zwei einzelne Photonen werden an einem Strahl­teiler über­lagert und ein Zwei-Photonen-NOON-Zustand erzeugt. (Bild: U. Stutt­gart)

Viele optische Nachweisverfahren für Biomoleküle oder chemische Sub­stanzen beruhen auf der inter­fero­me­trischen Messung einer Phase. Die maximal erziel­bare Präzi­sion einer solchen Messung hängt von verschie­denen Um­ständen ab. Nach den Regeln der klas­sischen Physik gibt es jedoch eine univer­selle Empfind­lich­keits­schranke, das Standard-Quanten­limit, das mit klas­sischem Licht, zum Beispiel Laser­licht, nicht unter­schritten werden kann. Verschränkte Licht­zustände erlauben es, diese klas­sische Schranke zu unter­bieten.

Halbleiter-Quantenpunkte sind für die Erzeugung von verschränkten Licht­zuständen ideal. So lässt sich der Quanten­punkt durch eine regel­mäßige Folge von kurzen optischen Pulsen anregen und emit­tiert dann bei geeig­neten Bedin­gungen nach jedem Puls ein einzelnes Photon. Dadurch ent­steht ein regel­mäßiger Strom von Einzel­photonen. Jeweils zwei dieser Einzel­photonen können an einem Strahl­teiler über­lagert werden. Bei dem anschlie­ßenden Zwei-Photonen-Inter­ferenz­prozess entstehen NOON-Zustände. In diesen spezi­ellen Licht­zuständen befinden sich die beiden Photonen in einem quanten­mecha­nischen Über­lagerungs­zustand und eignen sich ideal für die inter­fero­metrischen Messungen mit erhöhter Phasen­auf­lösung.

Markus Müller und Hüseyin Vural, Doktoranden am Institut für Halb­leiter­optik und funktio­nelle Grenz­flächen der Uni Stutt­gart, ist es nun mit Hilfe eines Halb­leiter-Quanten­punkts gelungen, quali­tativ hoch­wertige NOON-Zustände zu erzeugen, die das Standard-Quanten­limit unter­bieten können. Photonen­trans­missions- und Detek­tions­verluste können jedoch die quanten­mecha­nisch verur­sachte Verbes­serung der Phasen­auf­lösung wieder zunichte machen. In dem Experi­ment der beiden Wissen­schaftler war das zunächst auch noch der Fall. Mit Hilfe von opti­mierten Halb­leiter-Quanten­punkt­licht­quellen sollten diese Probleme jedoch schon bald gelöst werden können. Dann könnte man mit verschränkten Photonen aus Halb­leiter-Quanten­punkten zukünftig einen besseren Sensor auf­bauen als mit klas­sischem Laser­licht.

U. Stuttgart / RK

Share |

Bestellen

Sie interessieren sich für ein Bezugsmöglichkeiten von Optik & Photonik oder Laser Technik Journal?

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer