Superatome für Quantencomputer

  • 17. December 2007



Stuttgarter Physiker untersuchten hochangeregte Rydberg-Atome in Bose-Einstein-Kondensaten und stellten fest, dass sie sich zu einem so genannten „Superatom“ zusammentun.

So genannte Rydberg-Atome, benannt nach dem Schwedischen Physiker Johannes Rydberg, sind mehrere tausend Mal größer als normale Atome. Physiker der Arbeitsgruppe von Tilman Pfau vom 5. Physikalischen Institut der Universität Stuttgart berichten nun über die Untersuchung von hochangeregten Rydberg-Atomen in einem Bose-Einstein-Kondensat. Daraus ergeben sich neue Ansätze zur Untersuchung quantenphysikalischer Phänomene. Die Stuttgarter Physiker stellten fest, dass sich Rydberg-Atome durch starke gegenseitige Wechselwirkungen zu einem so genannten „Superatom“ zusammentun.

Ein solches Superatom umfasst bis zu 10.000 Atome, welche gemeinsam eine einzige Rydberg-Anregung teilen. In einem weiteren Experiment zeigten die Wissenschaftler, dass trotz der starken Wechselwirkungen die Anregung kohärent erfolgt, was für die Anwendung in Quanten-Computerkonzepten unverzichtbar ist. Über die Ergebnisse berichteten die Stuttgarter Forscher in der Fachzeitschrift Physical Review Letters. Die Publikation ist in diesem Jahr bereits die dritte Veröffentlichung der Gruppe in Folge zum Thema kohärente Rydberg-Anregung ultrakalter Atome.

Abb.: Gefangene Rubidium-Atome (leuchtend rot in der Bildmitte) werden durch einen blauen Laserstrahl in den Rydberg-Zustand angeregt. (Quelle: Universität Stuttgart)

Das locker gebundene Elektron von Rydberg-Atomen reagiert besonders empfindlich auf elektrische Felder und andere Rydberg-Atome in der Nähe. So können sich Rydberg-Atome über Distanzen von etwa fünf Mikrometern hinweg „fühlen“. Das entspricht dem 50-fachen ihrer eigenen Größe und ist halb so groß wie ein rotes Blutkörperchen. Für Atome sind das gigantische Entfernungen. Außerdem kann in dem gut geschützten Kernspin von Rydberg-Atomen Quanten-Information gespeichert werden, weswegen die „Superatome“ auch als mögliche Systeme gehandelt werden, um einen Quanten-Computer zu realisieren. Mit Rydberg-Atomen in einem Bose-Einstein-Kondensat hat man darüber hinaus ein Modell-System zur Verfügung, um Fragen der Vielteilchen-Physik, neuartige Moleküle sowie Störstellen in einem Quantengas zu untersuchen. Es wird erwartet, dass sich solche Störstellen völlig reibungsfrei in dem Gas bewegen können.

Quelle: Universität Stuttgart

Weitere Infos:

Weitere Literatur

Share |

Webinar

Simulation für mehr Elektromobilität

  • 27. October 2016

Von Kindern auf E-Boards über Pizza­boten auf E-Scootern bis zu Hybrid­bussen im Nah­ver­kehr sind Elektro­fahr­zeuge im Alltag ange­kommen und stehen für den Anfang einer glo­balen Ent­wicklung.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer