Licht auf dem Lévy-Flug

  • 23. May 2008
Licht auf dem Lévy-Flug

In einer neuartigen Suspension breitet sich das Licht superdiffusiv aus.

In lichtdurchlässigen Substanzen wie Milchglas, Milch oder Nebel diffundiert das Licht. Die Lichtstrahlen oder -wellen werden durch Kollisionen mit Inhomogenitäten in der Substanz vielfach abgelenkt, sodass sie eine Irrfahrt oder einen Random Walk machen. Dabei kommen sie wesentlich langsamer voran als bei einer geradlinigen Bewegung: Das gemittelte Quadrat der Entfernung vom Startpunkt nimmt linear mit der Zahl der auf dem Weg erlittenen Kollisionen zu und nicht quadratisch. Doch jetzt haben Diederik Wiersma und seine Kollegen eine Suspension hergestellt, in der das Licht einen als Lévy-Flug bezeichneten Random Walk ausführt und schneller vorankommt als durch Diffusion.

Levy Random Walk

Abb.: links dargestellt ist die Ausbreitung durch normale Diffusion. Rechts ist der Random Walk eines Levy Flugs zu sehen mit g = 2 .

Damit sich das Licht in einer Substanz diffusiv ausbreiten kann, muss die freie Weglänge zwischen zwei Kollisionen so um ihren Mittelwert schwanken, dass sie eine endliche Varianz hat. Sehr große Schritte sind beim diffusiven Random Walk extrem unwahrscheinlich. Hingegen können beim Lévy-Flug auch sehr große Einzelschritte vorkommen. Die Wahrscheinlichkeitsverteilung für die Schrittlänge L fällt nur sehr langsam ab, und zwar wie 1/L1+a, wobei 1≤a<2 gilt. Der „dicke Schwanz“ dieser Verteilung führt dazu, dass die Varianz <L 2 > – ( < L >)2 unendlich ist. Entsprechend schnell kommt man auf einem Lévy-Flug voran. Nach N Schritten gilt für das mittlere Quadrat der Entfernung vom Startpunkt: < x 2> = D Ng, wobei der Exponent g=3-a zwischen 1 und 2 liegt. Der Lévy-Flug ist somit superdiffusiv.

Trotz seiner ungewöhnlichen Eigenschaften kommt der superdiffusive Lévy-Flug in der belebten und der unbelebten Natur vor. Man findet ihn beim Reiseverhalten der Menschen ebenso wie bei der Nahrungssuche verschiedener Tierarten; in chaotischen Dynamiken tritt er auf und bei der anomalen Diffusion in Flüssigkeiten und Plasmen, wie numerische Simulationen nahelegen. Doch experimentell konnte man den Lévy-Flug bei Transportvorgängen in Materialien bisher nicht beobachten und untersuchen. Mit dem von Wiersma und seinen Kollegen entwickelten „Lévy-Glas“ ist das jetzt für die Ausbreitung von Licht gelungen. Bei diesem Material lässt sich die statistische Verteilung der Schrittlängen des Random Walks, also die Verteilung der freien Weglängen zwischen zwei Kollisionen, maßschneidern.

Um dieses Problems zu lösen, könnte man auf die Idee kommen, in ein transparentes Material unterschiedlich große Partikel als Streuzentren einzubetten, die eine fraktale, selbstähnliche Struktur ergeben. Doch die Forscher weisen darauf hin, dass dies nicht zum Erfolg führt, da der Streuquerschnitt sehr stark von der Teilchengröße abhängt. Stattdessen nahmen sie Teilchen einer Größe und variierten die Dichte, mit der diese Streuzentren im Material angeordnet waren. Dazu gaben sie Nanoteilchen aus Titandioxid in flüssiges Natriumsilikat und fügten unterschiedlich große Glaskügelchen hinzu. Während die Nanoteilchen einen hohen Brechungsindex hatten und das Licht sehr stark streuten, hatten die Glaspartikel denselben Brechungsindex wie die Flüssigkeit. Sie beeinflussten lediglich die räumliche Verteilung der Streuzentren.

In der Lösung waren Glaskügelchen, deren Durchmesser 20 verschiedene Werte von 5 µm bis 550 µm hatte, die unterschiedlich häufig vorkamen. Die Berechnungen der Forscher hatten nämlich folgendes ergeben: Wenn die Häufigkeitsverteilung der Durchmesser d die Form 1/d2+a hat, dann breitet sich das Licht in dieser Lösung so aus, wie es einem Lévy-Flug mit dem Exponenten a entspricht. Wo sich die kleinen Kugeln befinden, ist die Dichte der Streuzentren groß, die das Licht zum Irrflug zwingen. Die großen Kugeln sorgen dafür, dass das Licht zwischendurch immer wieder sehr große Distanzen unbehindert zurücklegen kann, wie es für einen Lévy-Flug charakteristisch ist.

Bei ihren Experimenten wählten die Forscher eine Verteilung der Kugeldurchmesser mit a=1. Es zeigte sich, dass die Lichtdurchlässigkeit einer Schicht dieses Lévy-Glases in Abhängigkeit von der Schichtdicke deutlich langsamer abnahm, als die einer „diffusiven“ Schicht mit a=2. Aus dem gemessenen Verhalten der Lichtdurchlässigkeit ermittelten die Forscher a=0,948. Wurde die Schicht aus Lévy-Glas an der Vorderseite mit einem 2 µm dicken Laserstrahl beleuchtet, so erschien auf der Rückseite ein Lichtfleck, dessen Durchmesser sehr stark schwankte, wenn man den Laserstrahl bewegte. Bei einer diffusiven Milchglasschicht treten solche extremen Schwankungen nicht auf. Ein Vergleich der experimentellen Resultate mit theoretischen und numerischen Ergebnissen zeigte, dass das Licht im Lévy-Glas tatsächlich einen Lévy-Flug absolviert hatte.

Diederik Wiersma und seine Kollegen sind zuversichtlich, dass man mit ihrer Methode Materialien mit neuartigen optischen Eigenschaften herstellen kann. Dazu gehören Farben mit ungewöhnlichen Lichteffekten und Zufallslaser aus ungeordnetem Material, in denen sich das Licht superdiffusiv ausbreitet und kohärent verstärkt wird.

Rainer Scharf

Weitere Infos


Weitere Literatur:
  • Gregor Hackenbroich: Zufallslaser – strahlende Unordnung. Physik Journal 7/2004, S.25

Share |

Newsletter

Haben Sie Interesse am kostenlosen wöchentlichen oder monatlichen pro-physik.de-Newsletter? Zum Abonnement geht es hier.

COMSOL NEWS 2018

thumbnail image: Messen Sie <i>M</i><sup>2</sup> in weniger als einer Minute

Messen Sie M2 in weniger als einer Minute

Das M2-Lasermessgerät Ophir BeamSquared 2.0 ermittelt die optische Güte des Laserstrahls schnell und präzise. Mehr

Webinar

Vom Raytracing-Modell zum digitalen Prototypen

  • 22. November 2018

Raytracing ist die Stan­dard­methode zur Ent­wick­lung von opti­schen Sys­te­men und wird ein­ge­setzt, um diese Sys­teme vir­tuell auszu­legen und Vor­her­sagen über ihre opti­schen Ei­gen­schaf­ten zu ma­chen. Ein­satz­be­rei­che sol­cher digi­ta­ler Pro­to­ty­pen sind bei­spiels­weise die Ent­wick­lung von Laser- oder Ab­bil­dungs­sys­te­men.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer