Keine halben Sachen

  • 18. February 2008



Die Magnetfeldperiode für Supraleiter beträgt h/e und ist damit doppelt so groß, wie bisher angenommen. Das haben Physiker aus Augsburg nachgewiesen.

Die Elektronen in einem Atom bewegen sich nach den Gesetzen der Quantenmechanik in so genannten Orbitalen, die 100 Millionen mal kleiner sind als eine Münze. Ganz ähnlich bewegen sich auch in Metallringen die Elektronen in Orbitalen, die sich allerdings über den gesamten Ring erstrecken können. Gemeinsam mit einem Gastwissenschaftler aus Moskau haben Augsburger Physiker am Zentrum für Elektronische Korrelationen und Magnetismus (EKM) solche Ringorbitale untersucht. Die Ergebnisse dieser Untersuchungen, die in der Fachzeitschrift „Nature Physics“ veröffentlicht wurden, sind überraschend: Sie widersprechen der etablierten Lehrmeinung, wonach die Magnetfeldperiode in Supraleitern h/2e sei, nachdem die Ladung der stromtragenden Elektronenpaare 2e beträgt. Wie die Augsburger Forschergruppe entdeckte, ist die Magnetfeldperiode mit h/e doppelt so groß wie bislang angenommen. Für zahlreiche elektronische Anwendungen ist dies von hoher Relevanz. Die Berechnung der genannten Orbitale gelang den Augsburger Physikern mit einem eigens entwickelten Computerprogramm, durch das zudem die faszinierende Schönheit dieser elektronischen Strukturen offenbart wurde (Abb.).

In supraleitenden Metallen kann der Strom in Ringen verlustfrei kreisen. Der Stromfluss, der durch die Elektronen in den Ringorbitalen getragen wird, kann durch ein Magnetfeld gesteuert werden, das den leeren Innenraum des Rings durchdringt. Das Magnetfeld verändert dabei die Orbitale in so raffinierter Weise, dass sich mit wachsendem Magnetfeld die Stromrichtung immer wieder umdreht. Die Periodizität dieser Oszillation wird durch zwei fundamentale Naturkonstanten bestimmt: durch das Planck'sche Wirkungsquantum h und durch die Elementarladung e. Mit der vor fünfzig Jahren entwickelten Theorie der Supraleitung hatte sich die Überzeugung etabliert, dass für Supraleiter die Magnetfeldperiode h/2e sei, da der Strom von Elektronenpaaren getragen wird und die Ladung dieser Paare 2e beträgt.

Abb.: Die Abbildungen zeigen Elektronenorbitale in quadratisch geformten Ringen. Diese Ringorbitale entsprechen den aus der Atomphysik bekannten Orbitalen, sind allerdings 1000-mal größer und wesentlich komplexer. (Quelle: Florian Loder, Universität Augsburg, EKM)

Die Physiker in Augsburg entdeckten jedoch, dass die Magnetfeldperiode in der Regel h/e ist, obwohl die Elektronen im Supraleiter gepaart sind. Damit ist diese Konstante also doppelt so groß, wie man jahrzehntelang zu wissen glaubte. Dies gilt auch für die Hochtemperatursupraleiter, für deren Entdeckung 1987 der Physik-Nobelpreis vergeben wurde. Da kleine supraleitende Ringe häufig in supraleitender Elektronik integriert sind, ist diese Entdeckung für elektronische Anwendungen relevant, zum Beispiel für schnelle Schalter in der Datenverarbeitung oder für supraleitende Qubits, die als elementare Bausteine einmal für Quantencomputer eingesetzt werden sollen.

Quelle: Universität Augsburg

Weitere Infos:

Share |

Newsletter

Haben Sie Interesse am kostenlosen wöchentlichen oder monatlichen pro-physik.de-Newsletter? Zum Abonnement geht es hier.

Neu auf EnergyViews

EnergyViews.de


Unsere Themen­seite energy­views.de hat zur­zeit leider fort­gesetzte Server-Aus­fälle und ist viel­fach uner­reich­bar. Unsere Web­master arbeiten an einer Migration, wir bitten um Ent­schul­di­gung!

Webinar

Particle Tracing geladener Teilchen

  • 23. June 2016

Das Particle Tra­cing Module er­wei­tert die Funk­tio­na­li­tä­ten der COMSOL Multi­physics Soft­ware-Umge­bung um die Mög­lich­keit, die Tra­jek­to­rien von Ionen, Elek­tro­nen und neu­tra­len Teil­chen in ex­ter­nen Fel­dern zu be­rech­nen.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer