Extrem dicht

  • 24. September 2015

Simulationen liefern neue Erkenntnisse über „warme dichte Materie", die auch im Inneren von Sternen vorkommt.

Ein Team vom Institut für Theoretische Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) unter der Leitung von Michael Bonitz konnte neue Erkenntnisse über die sogenannte warme dichte Materie gewinnen. So bezeichnet man einen bislang weitgehend unverstandenen Materiezustand, der sich völlig von den festen, flüssigen, gasförmigen Aggregatzuständen oder Plasmen unterscheidet. Die warme dichte Materie zeigt dabei in scheinbarem Widerspruch gleichzeitig Eigenschaften aller anderen Aggregatzustände. Die Kieler Wissenschaftler entwickelten nun ein neuartiges Simulationsverfahren, das die Ungenauigkeiten der bestehenden theoretischen Modelle, die diesen Materiezustand beschreiben, überwindet.

Warme dichte Materie besitzt eine bis zu tausendfach höhere Dichte als gewöhnliche Festkörper. Sie existiert zum Beispiel als Folge der enormen Gravitation im Inneren von Zwergsternen. In Laborexperimenten lässt sich dieser Zustand unter dem Einfluss hochintensiver Laserstrahlung für kurze Zeiträume im Nano- bis Mikrosekundenbereich erzeugen. Lange genug um experimentell oder in Computersimulationen Aussagen über den Materie­zustand zu treffen. „Eine genaue Kenntnis der warmen dichten Materie ist der Schlüssel zur Beantwortung vieler astrophysikalischer Fragen. Sie hilft uns zum Beispiel dabei, das Alter von Galaxien zu bestimmen und ist auch für technologische Anwendungen wie etwa die Trägheitsfusion oder das Verständnis des Verhaltens von Materialien unter extremem Druck essentiell“, ordnet Bonitz die Bedeutung der Ergebnisse ein.

Bisherige theoretische Modelle konnten nur ungenaue Informationen über die Eigenschaften der warmen dichten Materie liefern. Grund dafür ist die besondere Komplexität des Zusammenspiels der Teilchen, insbesondere aber das Verhalten der beteiligten Elektronen. Sie beeinflussen sich gegenseitig stark und unterliegen zudem den Gesetzen der Quantenmechanik, so dass sie mit den bislang vorhandenen Modellen nicht zuverlässig zu beschreiben sind.

Dank der neuartigen Simulationsmethode ist es nun möglich, Ergebnisse von Experimenten besser zu verstehen und zuverlässige Vorhersagen für neue Messungen zu machen. Das Verfahren der Kieler Forschungsgruppe kommt dabei ohne die in theoretischen Modellen üblichen Vereinfachungen aus. „Man kann es daher als ein Computerexperiment betrachten, das faktisch exakte Ergebnisse liefert“, so Bonitz weiter. Die nun an der CAU gewonnenen Erkenntnisse bilden die Grundlage für die Verbesserung bestehender und die Entwicklung neuer numerischer Verfahren, mit denen in Zukunft eine vollständige Beschreibung der warmen dichten Materie gelingen kann.

CAU / PH

Share |

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer