Rekord bei Supraleitung

  • 19. August 2015

Unter extrem hohem Druck wird Schwefelwasserstoff schon bei minus 70 Grad Celsius supraleitend.

Bei so hohen Temperaturen hat bislang noch kein Material Strom ohne Widerstand geleitet: Mainzer Forscher des Max-Planck-Instituts für Chemie und der Johannes-Gutenberg-Universität beobachteten, dass Schwefel­wasser­stoff bei minus 70 Grad Celsius supraleitend wird – wenn sie die Substanz einem Druck von 1,5 Millionen Bar aussetzen. Das entspricht der Hälfte des Drucks im Inneren der Erde. Mit ihren Hochdruck-Experimenten haben die Mainzer Forscher nicht nur einen Rekord für die Hochtemperatur-Supraleitung aufgestellt, sie weisen mit ihren Erkenntnissen auch einen neuen Weg, auf dem sich möglicherweise Strom bei Raumtemperatur verlustfrei transportieren lässt.

Abb.: Erstaunlich handlich ist die Apparatur, mit der extrem hohe Drücke erzeugt werden. Mit Inbus-Schrauben pressen die Forscher die metallene Zelle zusammen. Den Hochdruck halten nur Diamenten aus. (Bild: T. Hartmann)

Abb.: Erstaunlich handlich ist die Apparatur, mit der extrem hohe Drücke erzeugt werden. Mit Inbus-Schrauben pressen die Forscher die metallene Zelle zusammen. Den Hochdruck halten nur Diamanten aus. (Bild: T. Hartmann)

Alltagstaugliche Supraleiter sind noch ein Traum vieler Fest­körper­physiker. Bislang sind nur Materialien bekannt, die Strom bei sehr tiefen Temperaturen ohne elektrischen Widerstand und mithin verlustfrei leiten. So besetzten in puncto Sprungtemperatur bisher spezielle Kupfer­keramiken, sogenannte Kuprate, die vorderen Plätze. Der Rekord einer solchen Keramik liegt bei etwa minus 140 Grad Celsius unter normalem Luftdruck und minus 109 Grad Celsius unter hohem Druck. In den Keramiken tritt dabei eine spezielle, unkonventionelle Form der Supraleitung auf. Um die konventionelle Supraleitung zu erreichen, waren bisher sogar mindestens minus 234 Grad Celsius nötig.

Ein Team um Mikhael Eremets, Leiter einer Arbeitsgruppe am Max-Planck-Institut für Chemie, hat in Zusammenarbeit mit Forschern der Johannes Gutenberg-Universität Mainz die konventionelle Supraleitung jetzt bei minus 70 Grad Celsius beobachtet, und zwar in herkömmlichem Schwefel­wasser­stoff (H2S). Um den Widerstand der unter normalen Bedingungen gasförmigen Substanz zu brechen, mussten die Wissenschaftler sie jedoch einem Druck von 1,5 Megabar aussetzen.

„Mit unseren Experimenten haben wir einen neuen Rekord für die Temperatur aufgestellt, bei der ein Material supraleitend wird“, sagt Mikhael Eremets. Außerdem hat sein Team erstmals experimentell nachgewiesen, dass es konventionelle Supra­leiter mit hoher Sprung­temperatur gibt. Theoretische Berechnungen hatten das unter anderem für H2S bereits vorhergesagt. „Es ist vielversprechend, nach anderen Materialien zu suchen, in denen konventionelle Supraleitung bei hohen Temperaturen auftritt“, sagt der Physiker. „Denn für die Sprungtemperatur konventioneller Supraleiter gibt es theoretisch keine Grenze, und unsere Experimente lassen hoffen, dass es sogar bei Raumtemperatur Supraleitung gibt.“

Den extrem hohen Druck, der nötig ist, um H2S bei vergleichsweise moderaten Minusgraden supraleitend zu machen, erzeugten die Forscher in einer speziellen Druckkammer, die weniger als ein Kubikzentimeter groß ist. Durch zwei seitliche Diamanten­spitzen, die wie Ambosse wirken, können sie den Druck auf die Probe stetig erhöhen. Die Zelle ist mit Kontakten versehen, um den elektrischen Widerstand der Probe zu messen. In einer anderen Hochdruckzelle können die Forscher zudem die magnetischen Eigenschaften eines Materials untersuchen, die sich bei der Sprungtemperatur ebenfalls ändern.

Nachdem die Forscher flüssigen Schwefel­wasser­stoff in eine solche Druckkammer gefüllt hatten, erhöhten sie den Druck auf die Probe schrittweise von etwa einem auf zwei Megabar und veränderten für jeden Druck auch die Temperatur. Dabei ermittelten sie in Messungen sowohl des Widerstands als auch der Magnetisierung die Sprungtemperatur des Materials. Die Messungen der Magnetisierung sind dabei aus­sage­kräftiger, weil ein Supraleiter ideale magnetische Eigenschaften besitzt.

Dass Schwefelwasserstoff unter hohem Druck seinen elektrischen Widerstand schon bei relativ hohen Temperaturen verliert, führen die Wissenschaftler vor allem auf eine Eigenschaft des Wasserstoffs zurück: Wasserstoffatome schwingen im Kristall­gitter mit der höchsten Frequenz aller Elemente, weil Wasserstoff am leichtesten ist. Da die Schwingungen des Kristall­gitters die konventionelle Supraleitung vermitteln – und zwar desto effektiver, je schneller die Atome schwingen –, weisen Materialien mit viel Wasserstoff eine relativ hohe Sprung­temperatur auf. Außerdem treiben starke Bindungen zwischen den Atomen die Temperatur in die Höhe, bei der ein Material supraleitend wird. Beide Bedingungen sind in H3S erfüllt, und genau diese Verbindung bildet sich unter Hochdruck aus H2S.

Nun suchen Mikhael Eremets und sein Team nach Materialien mit noch höheren Sprung­temperaturen. Den Druck auf Schwefel­wasser­stoff über 1,5 Megabar hinaus zu erhöhen, hilft dabei nicht. Das haben theoretische Physiker nicht nur berechnet, das Mainzer Team hat dies nun auch experimentell bestätigt. Bei noch höherem Druck verändert sich das Gefüge der Elektronen nämlich so, dass die Sprungtemperatur wieder langsam sinkt.

„Ein offensichtlicher Kandidat für eine hohe Sprung­temperatur ist reiner Wasserstoff“, sagt Mikhael Eremets. „Man erwartet, dass er unter hohem Druck schon bei Raumtemperatur supraleitend wird.“ Mit ihm experimentiert sein Team bereits, doch die Versuche sind sehr schwierig, weil dafür Drücke von drei bis vier Megabar nötig sind.

„Unsere Untersuchung an Schwefel­wasserstoff zeigt aber, dass viele wasserstoffreiche Materialien eine hohe Sprung­temperatur besitzen können“, so Eremets. Dabei ist es vielleicht auch ohne Hochdruck möglich, einen Hochtemperatur-Supraleiter zu finden, der diesen Namen auch gemessen am alltäglichen Temperatur­gefühl verdient. Derzeit brauchen die Mainzer Forscher den hohen Druck, um Materialien, die wie Schwefel­wasser­stoff elektrisch isolierend wirken, in Metalle zu verwandeln. „Möglicherweise gibt es Polymere oder andere wasserstoffreiche Verbindungen, die sich auf andere Weise metallisch machen lassen und bei Raumtemperatur supraleitend werden“, sagt der Physiker. Ließen sich solche Materialien finden, gäbe es sie endlich: Supraleiter, die für eine breite technische Anwendung brauchbar sind.

MPIC / DE

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer