Eng gepackte Magnetinseln

  • 08. April 2015

Hoch magnetisierbare Legierungen sorgen für höhere Dichten in Speichermedien.

Informationstechnologie ist heute auch eine Herausforderung für die Materialwissenschaft: Sie braucht Materialien mit neuen magnetischen Eigenschaften, etwa für neuartige Speichermedien oder Festplatten-Leseköpfe. Dresdner Max-Planck-Forscher können da helfen. Denn sie können neue Materialien mit gewünschten magnetischen Eigenschaften am Computer designen und anschließend im Labor herstellen. Auf diese Weise hat ein Team um Claudia Felser, Direktorin am Max-Planck-Institut für chemische Physik fester Stoffe, nun eine Legierung konzipiert und hergestellt, die sich so stark magnetisieren lässt wie bislang kein anderes Material. Und das obwohl der Stoff zunächst nicht-magnetisch zu sein scheint. Doch die Verbindung aus Mangan, Platin und Gallium wird durch ein äußeres Magnetfeld selbst magnetisch und behält auch nach Abschalten des äußeren Feldes ein starkes inneres Feld. Die Forscher konnten einen solchen Effekt auch mit einem zweiten Material bei Raumtemperatur erzielen.

Magnetische Materialien spielen eine Schlüsselrolle in der Informationstechnologie. Festplatten beispielsweise speichern Information auf winzigen magnetischen Inselchen. In Zukunft sollen die Inselchen immer weiter schrumpfen, um die Speicherkapazität weiter zu erhöhen. Die immer kleineren Inselchen könnten aber auch Grundlage für neue Speicherkonzepte sein. Damit diese Miniaturisierung weiter gelingt, müssen neue Legierungen entwickelt werden, die Magnetfelder auch dann noch festhalten, wenn ein Magnet-Inselchen nur noch wenige Nanometer klein ist. Das ist jedoch schwierig, weil eine kleine Kompassnadel leichter von Umwelteinflüssen gestört wird als eine größere.

Auch bei Leseköpfen wird dieses Problem in Zukunft eine Rolle spielen. Leseköpfe enthalten zwei magnetische Schichten, von denen eine als Referenzschicht eine feste Magnetisierung besitzt, während die Magnetisierung der zweiten durch die magnetischen Inselchen auf der Festplatte umgeschaltet wird. Je nach Orientierung gegenüber der Referenzschicht ändert sich der Stromfluss durch den Lesekopf, sodass die Information auf der Festplatte in elektrische Signale umgewandelt wird. Auch hier sucht man nach Materialien, die die Magnetisierung der Referenzschicht möglichst gut festhalten, um die Leseköpfe weiter verkleinern zu können. Gesucht sind also neue magnetischen Materialien, die diesen Anforderungen genügen.

„Wir können Materialien mit sehr unterschiedlichen magnetischen Eigenschaften am Computer designen und anschließend herstellen“, sagt Claudia Felser, Direktorin am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden. Auf diese Weise hat ihr Team nun eine Legierung mit sehr außergewöhnlichen Eigenschaften entwickelt. Eine nach außen unmagnetische Legierung aus den Metallen Mangan, Platin und Gallium behält ein starkes inneres Magnetfeld, nachdem es vorübergehend einem äußeren Magnetfeld ausgesetzt worden ist.

Das Material speichert sozusagen ein äußeres magnetisches Signal auf sehr störungsresistente Weise. Das innere Magnetfeld ist mit mehr als drei Tesla so stark wie das eines starken Magentresonanztomographen und gehört zu den größten bislang gemessenen. Diese starke und stabile Magnetisierung könnte helfen, die magnetische Stabilität stark miniaturisierter Bauelemente zu erhöhen.

Die Forscher stellten zunächst eine so genannte Heusler-Verbindung her. Dabei handelt es sich um eine Legierung, deren magnetische Eigenschaften sich grundlegend von denen der Einzelkomponenten unterscheiden. Verbinden sich Atome verschiedener Metalle zu einer Legierung, dann ordnen sie sich in einer gitterähnlichen Struktur nebeneinander an. Die magnetischen Momente beeinflussen sich gegenseitig, wobei sie sich parallel oder antiparallel anordnen können. Die Dresdner Forscher mischten Mangan, Platin und Gallium in einem ganz bestimmten Verhältnis – und zwar so, dass sich die magnetischen Momente der Mangan-Atome abwechselnd antiparallel ausrichteten. Auf diese Weise neutralisieren sich die magnetischen Momente gegenseitig. Einen solchen Kristall, der nach außen hin unmagnetisch erscheint, nennt man auch einen synthetischen Antiferromagneten.

Am High Field Magnet Laboratory (HFML) an der Radboud University in Nimwegen, Niederlande, ließen die Dresdner Forscher ihre Probe einem sehr großen Magnetfeld von 20 Tesla aussetzen. Unter Einwirkung dieses Magnetfeldes wurde die Legierung in dem Magnetfeld auf eine Temperatur von etwa minus 150 Grad Celsius abgekühlt. Dadurch entstand im Innern des Kristalls ein Magnetfeld von mehr als drei Tesla Stärke. Und selbst, als das Magnetfeld abgeschaltet wurde, behielt die Legierung ihr inneres Magnetfeld bei.

Die Dresdner Forscher erklären dies so: Im Innern der Heusler-Verbindung gibt es winzige Inselchen, in denen sich die magnetischen Momente der einzelnen Atome nicht vollständig kompensieren. Legt man ein äußeres Feld an, drehen sich diese Inselchen in die Richtung des Magnetfeldes und wachsen in ihrer Größe. Nach dem Abschalten des Magnetfeldes bleiben die Inselchen in dieser Orientierung, da die Kompassnadeln an ihren Rändern mit den entgegengesetzt orientierten Kompassnadeln, die das Inselchen unmittelbar umgebenden, wechselwirken und dadurch festgehalten werden. Die magnetischen Momente, die das Inselchen einsäumen, wirken sozusagen wie Heftzwecken für dessen magnetische Orientierung.

Dieser Hafteffekt macht die Legierung interessant für Magnetspeicher, bei denen auch Bits im Nanoformat stabil bleiben. Ein weiterer Pluspunkt: Das Magnetfeld der Inselchen sind durch die entgegengesetzt orientierten Magnetmomente, die sie umgeben, voneinander ziemlich gut abgeschirmt. „Daher kann es benachbarte Magnete nicht negativ beeinflussen“, erklärt Felser. Somit lässt sich Information auf Festplatten oder künftigen magnetischen Arbeitsspeichern extrem dicht packen, ohne dass sich die Bits gegenseitig stören.

Der Mechanismus, der die Magnetisierung der Inselchen festhält, ist der gleiche, der bei Leseköpfen die Magnetisierung der Referenzschicht sichert: ein sogenannter Exchange Bias. Daher sind die Ergebnisse auch für die weitere Miniaturisierung dieser Bauteile interessant.

Eine zweite Legierung aus Mangan, Eisen und Gallium zeigte ähnliche Effekte auch bei Raumtemperatur. „Das beweist, dass unser Konzept universell ist und sich eignet, Alltagsanwendungen zu realisieren“, sagt Claudia Felser.

Um die Kommerzialisierung ihrer Forschungsergebnisse voranzutreiben, arbeiten die Dresdener Forscher bereits mit einem Festplattenhersteller zusammen. Claudia Felser ist guter Dinge, weitere anwendungsrelevante Materialien im Computer zu designen. „Wir haben ein Team von etwa fünfzig Forschern, eine starke Theoriegruppe und eine synthetische Gruppe, welche die Materialien herstellen kann“, erklärt die Chemikerin. In kleineren Gruppen arbeiten sie an verschiedensten Materialdesigns. Etwa auch an neuen Thermoelektrika, die zum Umwandeln von Abwärme in elektrische Energie dienen sollen.

CPFS / DE

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer