Schwere Nanowirbel

  • 05. February 2015

Röntgenholografische Aufnahmen zeigen: Skyrmionen besitzen eine Masse.

Das Phänomen ist bekannt: Wenn ein Kreisel angeschubst wird oder auf einer geneigten Fläche rotiert, bewegt er sich meist nicht geradlinig vorwärts, sondern beschreibt kleine Bögen. Forschern der TU Berlin und der Universität Mainz ist es zusammen mit Forschungs­teams aus den Niederlanden und der Schweiz nun gelungen, solche Bewegungs­muster auch in einem magnetischen Schichts­ystem sichtbar zu machen – und zwar in Form von kleinen magnetischen Nano­wirbeln. Dabei stießen die Forscher auf einen neuen Befund: Die Nanowirbel besitzen eine Masse.

Abb.: Dünner magnetischer Film mit Wirbel in der Mitte. Ein Nanodraht aus Gold umgibt die Magnetschicht. Ein kurzer Strompuls bewegt das „Skyrmion“ (blaue Kugel) aus seiner Ruhelage. Auf einer Spiralbahn bewegt es sich zurück in seine Ausgangsposition. Bahn und Skyrmion sind schematisch oberhalb der Struktur dargestellt. (Bild: B. Krüger)

Abb.: Dünner magnetischer Film mit Wirbel in der Mitte. Ein Nanodraht aus Gold umgibt die Magnetschicht. Ein kurzer Strompuls bewegt das „Skyrmion“ (blaue Kugel) aus seiner Ruhelage. Auf einer Spiral­bahn bewegt es sich zurück in seine Ausgangs­position. Bahn und Skyrmion sind schematisch oberhalb der Struktur dargestellt. (Bild: B. Krüger)

„Die magnetischen Nanowirbel können wir mit Hilfe von Magnet­feldern gezielt erzeugen und dann ‚anschubsen‘, sodass sie aus ihrer Gleich­gewichts­lage heraus­gelenkt werden“, erklärt Felix Büttner, der diese Forschungen in seiner Doktor­arbeit vorangetrieben hat. „Wir konnten dann sehr genau verfolgen, auf welchem Weg diese Skyrmionen, wie diese besonderen Nanowirbel genannt werden, sich in ihre Ruhelage zurückbewegen“, so Büttner weiter. Die Wirbel entstehen in dünnen magnetischen Schicht­systemen, in denen abwechselnd Lagen aus einer Kobalt-Bor-Legierung und Platin-Schichten übereinander gestapelt sind. Jede Einzel­schicht ist weniger als ein Nanometer dick. Dadurch entstehen besondere magnetische Eigen­schaften. Der Durch­messer dieser magnetischen Wirbel ist nicht größer als 100 Nanometer.

Mit einer besonderen Technik gelang es den Forschern, die Bewegung der Skyrmionen mit einer Präzision von wenigen Nanometern in Zeit­abständen von weniger als einer Nanosekunde aufzunehmen. Möglich wurde dies durch holografische Aufnahme­techniken mittels intensiver Röntgenpulse an der Berliner Synchrotron­quelle BESSY II am Helmholtz-Zentrum Berlin (HZB). Diese holo­grafischen Aufnahme­techniken hat man am TU-Fachgebiet „Nanometeroptik und Röntgenstreuung“ von Stefan Eisebitt gemeinsam mit dem HZB über Jahre weiterentwickelt.

Was Büttner und seine Mitstreiter in den Röntgenhologrammen sahen, war bemerkenswert: „Ähnlich wie ein angestoßener Kreisel bewegt sich der Nanowirbel nicht geradlinig, sondern auf einer spiralförmigen Bahn“, erklärt Büttner. „Durch den Vergleich unserer Messungen mit Modellrechnungen stellten wir fest, dass sich diese spiralförmige Bewegung nur erklären lässt, wenn das Skyrmion eine Masse besitzt.“

Dies ist ein wichtiger Befund, da die hier beobachteten Nanowirbel nur eine spezielle Art von in der Natur zu findenden Skyrmionen sind. „Skyrmionen wurden in der Vergangenheit vielfach als Teilchen ohne Masse beschrieben“, erläutert Christoforos Moutafis vom Paul Scherrer Institut, der sich schon lange mit der theoretischen Beschreibung solcher Strukturen auseinander­setzt. Daher wird das in dieser Arbeit etablierte Konzept von Masse auch zum Verständnis dieser Teilchen beitragen.

Speziell diese magnetischen Nano­wirbel in dünnen magnetischen Schichten könnten auch für konkrete Anwendungen in Frage kommen: Sie werden bereits heute als alternative Informations­träger in der Datenspeicherung und -verarbeitung diskutiert. Forscher vermuten, dass sich aufgrund ihrer „Wirbel­eigenschaft“ Bits, also Informations­einheiten, auf kleinerem Raum und deutlich stabiler als bisher speichern und bewegen lassen. Möglicherweise können nun die neuen Einsichten in das Verhalten der Skyrmionen dazu beitragen, solche neuartigen Konzepte für die Informations­verarbeitung zu verwirklichen.

TU Berlin / HZB / DE

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer