Begann das Leben in der Erdkruste?

  • 17. November 2014

These zweier Duisburger Forscher macht derzeit in Expertenkreisen Furore.

Was auf der jungen Erde vor Jahrmilliarden los war, lässt sich heute nur sehr schwer rekonstruieren. Erst recht, welche Bedingungen für die Entstehung von Leben vorherrschten. Wissenschaftler beschränkten sich deshalb bislang eher auf eng begrenzte Aussagen zu einzelnen Reaktionen. Als möglicher Ort für das Aufkommen erster organischer Materie wurden alle möglichen Lokalitäten auf der Erdoberfläche diskutiert: von der Tiefsee bis hin zu flachen Tümpeln. In letzter Zeit wurden mangels plausibler Alternativen sogar außerirdische Regionen, wie der Mars oder der Weltraum insgesamt, als Lösung vorgeschlagen.

Das Leben könnte in den tiefreichenden tektonischen Störungszonen mit Kontakt zum Erdmantel begonnen haben. (Bild: UDE / G. Berberich)

Abb.: Das Leben könnte in den tiefreichenden tektonischen Störungszonen mit Kontakt zum Erdmantel begonnen haben. (Bild: UDE / G. Berberich)

Vernachlässigt wurde dagegen der Bereich der Erdkruste. Eigentlich unlogisch, denn genau hier, in den tiefreichenden tektonischen Störungszonen mit Kontakt zum Erdmantel, sind die Verhältnisse optimal, so der Geologe Ulrich Schreiber und der Physikochemiker Christian Mayer von der Uni Duisburg-Essen. Von dort steigen Wasser, Kohlendioxid und andere Gase auf, wie heute noch in der Eifel. Sie enthalten alle erforderlichen Stoffe, die man für organisch-biologische Moleküle benötigt. Und mit ihnen begann das Leben.

Das überzeugendste Argument, dass es in der Erdkruste losging, ist das Kohlendioxid. Denn ab einer Tiefe von etwa 800 Metern ist es zugleich flüssig und gasförmig – „überkritisch“. Mayer: „Mit diesem besonderen Zustand können wir viele Reaktionen erklären, die im Wasser nicht funktionieren. Kohlendioxid wirkt dann nämlich wie ein organisches Lösungsmittel und erweitert die Zahl der möglichen chemischen Reaktionen erheblich.“ Darüber hinaus bildet es mit Wasser Grenzflächen, die schrittweise zu einer Doppelschicht-Membran führen, das wichtigste Strukturelement der lebenden Zelle.

Neu ist, so Mayer, dass das bereits 2012 publizierte UDE-Modell den Entstehungsprozess umfassend beschreibt und mehrere Probleme löst: die Molekülherkunft, die Aufkonzentrierung, die Energieversorgung und die Membranbildung. Im Labor ließen sich bereits diese grundlegenden Schritte auf dem Weg zu einer Zelle nachweisen: Seien es erste zellähnliche Strukturen oder die Entstehung komplexer Moleküle wie Proteine und Enzyme. „Besonders attraktiv für das Erklärungsmodell ist zudem die Tatsache, dass diese Entstehungsbedingungen schon in bestimmten Gesteinen aus der Frühzeit der Erde nachgewiesen werden konnten“, so der Chemiker Oliver Schmitz.

In winzigen Flüssigkeitseinschlüssen, wie sie in uralten australischen Gangquarzen vorkommen, fanden die Wissenschaftler eine Vielzahl organischer Stoffe aus der Frühzeit der Erde. Weil sie während der Kristallbildung eingeschlossen wurden, haben sie sich bis heute erhalten. Sie helfen dabei, die Ergebnisse der Laborversuche mit der Wirklichkeit abzugleichen.

UDE / OD [Update 18.11.: Die UDE hat die Zeitangabe im ersten Satz korrigiert; Dank an K. Urban f. d. Hinweis]

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer