Turbulenzen am Rand der Sonne

  • 17. October 2014

Dynamische Prozesse in der Photo­sphäre kön­nen die Tempe­ratur­vertei­lung in den äußeren Son­nen­schich­ten um­kehren.

Die Sonne ist temperamentvoller als gedacht. Neben den Sonneneruptionen – gewaltigen Teilchen- und Strahlungsausbrüchen in der äußeren Atmosphäre – kommt es auch in der darunterliegenden kühleren Schicht zu regelrechten Explosionen: An manchen Stellen staut sich magnetische Energie auf und entlädt sich innerhalb weniger Minuten in Temperaturausbrüchen von bis zu 100.000 Grad. Belege für diese kurzlebigen Hitzenester fanden Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen nun erstmals in Daten des amerikanischen Weltraumteleskops IRIS.

Abb.: Auf diesem Bild der Fotosphäre, aufgenommen vom Weltraumteleskop IRIS Ende September 2013, machen sich die Explosionen als helle Flecken bemerkbar. Das Bild zeigt einen Ausschnitt von 50.000 auf 25.000 Kilometern Größe. (Bild: NASA)

Abb.: Auf diesem Bild der Photosphäre, aufgenommen vom Weltraumteleskop IRIS Ende September 2013, machen sich die Explosionen als helle Flecken bemerkbar. Das Bild zeigt einen Ausschnitt von 50.000 auf 25.000 Kilometern Größe. (Bild: NASA)

Heiß ist nicht gleich heiß – zumindest, wenn es um die Sonne geht. Mit etwa 5000 Grad ist etwa die sichtbare Oberfläche der Sonne, die Photosphäre, vergleichsweise kühl. Weiter nach außen hin nehmen die Temperaturen leicht ab, um dann in der Atmosphäre der Sonne erst mäßig und dann rasant auf Werte von einer Million Grad anzusteigen.

„Unsere Auswertungen zeigen nun, dass dieser Temperaturverlauf nicht überall gleich und zudem ständig in Bewegung ist“, sagt Hardi Peter vom Göttinger Max-Planck-Institut für Sonnensystemforschung. „In kleinen begrenzten Regionen sind offenbar für kurze Zeit auch in der kühlen äußeren Fotosphäre dramatisch höhere Temperaturen möglich.“

Zusammen mit einem internationalen Team hat er Daten des Weltraumteleskops IRIS – Interface Region Imaging Spectrograph – von aktiven Regionen auf der Sonne ausgewertet. Diese Bereiche in der Fotosphäre zeichnen sich durch hohe magnetische Feldstärken aus und sind die Entstehungsorte der dunklen Sonnenflecken, welche die Oberfläche der Sonne mal mehr, mal weniger zahlreich überziehen.

„In diesen Gebieten fanden wir Hitzetaschen etwa halb so groß wie Deutschland, die bis zu zwanzigmal so heiß sind wie ihre unmittelbare Umgebung“, sagt Peter. Nur für wenige Minuten blitzen diese Gebiete auf und kehren danach wieder zur Normaltemperatur zurück. Die dabei freigesetzte Energiemenge würde ausreichen, um Deutschland für 8000 Jahre mit Strom zu versorgen.

Die gewaltigen Photosphären-Explosionen sind zwar im sichtbaren Licht nicht erkennbar, hinterlassen ihre Spuren jedoch in der ultravioletten Strahlung, welche die Sonne ins All sendet. Genauer als jedes andere Observatorium zuvor zerlegt IRIS die ultraviolette Strahlung in ihre einzelnen Wellenlängen. Dazu kommt eine bisher unerreichte räumliche Auflösung: Das Weltraumteleskop, das im Juli vergangenen Jahres zum ersten Mal seinen Blick auf die Sonne richtete, macht Strukturen mit einer Größe von nur 250 Kilometern sichtbar und kann die Strahlung, die solche kleine Gebiete emittieren, getrennt untersuchen.

„Zu unserer großen Überraschung fanden wir in den aktiven Gebieten begrenzte Regionen, deren Strahlung für kurze Zeit in entscheidenden Einzelheiten gravierend von der ihrer Umgebung abweicht“, sagt Peter. So entdeckten die Forscher dort charakteristische Wellenlängen, welche bestimmte hoch ionisierte Atome im Sonnenplasma – etwa dreifach ionisiertes Silizium – in den Weltraum senden.

„Allein die Existenz dieser Wellenlängen im Spektrum deutet auf extrem hohe Temperaturen hin“, so Peter. Denn nur unter diesen Bedingungen kann Silizium gleich drei seiner Elektronen verlieren. Doch in welcher Schicht der Sonne war es zu diesen Temperaturen gekommen? Tatsächlich in der kühlen Fotosphäre? Oder – deutlich unspektakulärer – weiter außen in der ohnehin heißeren Atmosphäre des Tagesgestirns?

Die spektralen Daten von IRIS erwiesen sich als so detailreich, dass die Wissenschaftler ihnen weitere entscheidende Hinweise entnehmen konnten. So etwa haben sie auf die Dichte des Sonnenplasmas am Entstehungsort der Strahlung geschlossen und nachgewiesen, dass die Strahlung auf ihrem Weg durch die weiter außen liegenden Sonnenschichten einfach ionisierten Eisenionen begegnet war. Diese treten jedoch nur in kühleren Regionen auf. „Insgesamt ergab sich ein stimmiges Bild: Die auffällige Strahlung muss ihren Ursprung in der kühlen äußeren Fotosphäre haben“, so Peter.

Die Forscher gehen davon aus, dass die starken Magnetfelder in der Photosphäre die notwendige Energie für die Hitzeausbrüche bereitstellen. Im Bereich der Sonnenflecken treten die magnetischen Feldlinien bogenförmig aus der Oberfläche der Sonne hervor; heißes Plasma durchströmt die Bögen. Tritt innerhalb dieser Ströme eine Art Kurzschluss auf, kommt es zu den Explosionen.

„Die neuen Ergebnisse haben unser Bild vom äußeren Aufbau der Sonne grundlegend verändert“, sagt der Max-Planck-Wissenschaftler. „Statt einer stabilen Temperaturschichtung gibt es offenbar auch in der Photosphäre dynamische Prozesse, die für kurze Zeit alles auf den Kopf stellen.“

Bereits im Jahr 1917 hatte der amerikanische Physiker Ferdinand Ellermann in der Fotosphäre Gebiete mit erhöhten Temperaturen entdeckt. Diese unterschieden sich jedoch nur um wenige tausend Grad von ihrer Umgebung und stellen somit eine eher kleinere Temperaturschwankung dar. Ob es sich bei den neu entdeckten Explosionen um dasselbe Phänomen handelt, ist derzeit noch unklar.

Auch eine weitere Veröffentlichung, zu der Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung beigetragen haben, zeichnet ein neues Bild der Vorgänge auf der Sonne. Unter der Leitung des Harvard-Smithsonian Center for Astrophysics in den USA entdeckten die Experten − ebenfalls in IRIS-Daten −, dass der Sonnenwind die Oberfläche des Sterns nicht gleichmäßig verlässt, sondern stellenweise in hochenergetischen lokalisierten Strömen.

MPS / DE

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer