Röntgenblick in fliegende Insekten

  • 26. March 2014

Dreidimensionale Röntgentomographie liefert Einblicke in das komplexe Zusammenspiel von Muskeln und Gelenk.

In der Zeit eines menschlichen Augenaufschlags kann eine Schmeißfliege 50-mal mit ihren Flügeln schlagen und dabei jeden einzelnen Flügelschlag mit zahlreichen winzigen Steuermuskeln kontrollieren – manche davon nur so dünn wie ein Menschenhaar. In den membranartigen Flügeln selbst sitzen keinerlei Muskeln; alle Flugmuskeln sind unsichtbar im Brustkorb versteckt. „Das Gewebe im Brustkorb der Fliege lässt kein sichtbares Licht durch, kann aber mit Röntgenstrahlen durchleuchtet werden“, erklärt Rajmund Mokso, der für den Versuch verantwortliche Forscher am PSI. „Indem wir die Fliegen in einem speziellen Versuchsaufbau für Hochgeschwindigkeitsaufnahmen an der Synchrotron Lichtquelle Schweiz herumdrehten, konnten wir mit hoher Geschwindigkeit einzelne zweidimensionale Röntgenaufnahmen anfertigen, auf denen die Flugmuskulatur in allen Phasen des Flügelschlags aus mehreren Blickwinkeln zu sehen war. Diese Aufnahmen haben wir zu 3-D-Filmen der Flugmuskeln kombiniert.“

Das Innere des Brustkorbs der Fliegen

Abb.: Das Innere des Brustkorbs der Fliegen. Sichtbar sind die fünf untersuchten Steuermuskeln (grün bis blau) und die Kraftmuskeln (gelb bis rot). (Bild: PSI)

„Mit diesem Versuch wurde ein Meilenstein in der tomografischen Mikroskopie mit Röntgenstrahlung erreicht. Es lassen sich Einzelheiten der Muskulatur der Fliege in einer Größenordnung von einigen Tausendstelmillimetern erkennen, sodass wir ihre Bewegung mit einer bisher einmaligen Zeitauflösung verfolgen können“, erläutert Marco Stampanoni, Leiter der Forschungsgruppe Röntgentomografie am PSI.

Als Reaktion auf das Herumdrehen im Versuchsaufbau versuchten die Fliegen, in die entgegengesetzte Richtung zu fliegen. So ermöglichten sie den Forschenden die Aufzeichnung der asymmetrischen Muskelbewegungen beim Kurvenflug. „Die Steuermuskeln machen weniger als drei Prozent der Gesamtmasse der Flugmuskulatur einer Fliege aus“, erklärt Graham Taylor, der die Studie in Oxford leitete. „Daher war es eine der Kernfragen, wie die Steuermuskeln die Leistung der viel größeren Kraftmuskeln beeinflussen können. Die Kraftmuskeln arbeiten symmetrisch, jedoch kann die Fliege bei jedem Flügel – durch den Wechsel zwischen verschiedenen Schwingungsarten – Kraft in einen auf die Absorption mechanischer Energie spezialisierten Steuermuskel umleiten, ähnlich wie die Gangschaltung beim Auto, die beim Herunterschalten eine Bremswirkung erzielt.“

Die Forschenden erhoffen sich, ihre Ergebnisse für den Entwurf von neuen mikromechanischen Geräten nutzen zu können. „Die Fliegen haben hier ein Problem gelöst, vor dem Ingenieure in demselben Größenbereich stehen“, so Taylor: „Wie werden verhältnismäßig große, komplexe Bewegungen in drei Dimensionen mit mechanischen Komponenten generiert, die eigentlich nur kleine, einfache Bewegungen im Eindimensionalen erzeugen können?“ Das geniale Design des Flugmotors der Schmeißfliege löst dieses Problem auf großartige Weise. Simon Walker aus Oxford fügt hinzu: „Das Flügellager der Fliege ist wohl das komplexeste Gelenk, das in der Natur vorkommt. Es ist das Ergebnis von über 300 Millionen Jahren evolutionärer Vervollkommnung. Das Ergebnis ist ein Mechanismus, der sich enorm von den herkömmlichen Konstruktionen unterscheidet, die von Menschen geschaffen wurden. Er setzt auf Krümmen und Beugen, statt wie ein Uhrwerk zu laufen.“

PSI / DE

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer