Superzeitlupe für den Nanokosmos

  • 23. December 2013

EU fördert lasergestützte Teilchenbeschleunigertechnik zur Beobachtung ultraschneller Prozesse mit 14 Millionen Euro. 

Chemische und biologische Prozesse, die in trillionstel Sekunden ablaufen, in atomarer Auflösung zu verfolgen und zu verstehen ist das Ziel eines Forschungsprojektes, für das vier Wissenschaftlerinnen und Wissenschaftler der Universität Hamburg, von DESY und der Arizona State University vom Europäischen Forschungsrat ERC für die kommenden sechs Jahre 14 Millionen Euro erhalten. Damit soll unter anderem eine neue Forschungsanlage bei DESY entstehen. Mit einem sogenannten ERC Synergy Grant unterstützt der Forschungsrat das Vorhaben „Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy“ (AXSIS) von Franz Kärtner (Center for Free-Electron Laser Science CFEL, DESY und Universität Hamburg), Henry Chapman (CFEL, DESY und Universität Hamburg), Ralph Aßmann (DESY) und Petra Fromme (Arizona State University).

Membranproteinkomplexes

Abb.: Darstellung eines großen Membranproteinkomplexes, der wesentlich für den Photosyntheseprozess ist. Die Daten wurden durch Kombination unterschiedlicher Beugungs-"Schnappschüsse“ von vielen tausend winzigen Proteinkristallen erhalten, unter Einsatz intensiver Femtosekunden-Röntgenstrahlpulsen der Linac Coherent Lichtquelle (LCLS) in Kalifornien. (Bild: T. White / CFEL / DESY)

Um ultraschnelle Prozesse wie mit einer Zeitlupe filmen zu können, entwickeln die vier Forscherinnen und Forscher eine Art Stroboskop mit ultrakurzen Lichtblitzen im Attosekundenbereich. Die Forscher setzen dabei auf helle, kurzwellige Röntgenstrahlung, denn um atomare Details erkennen zu können, müssen die Lichtimpulse eine sehr kurze Wellenlänge haben. Damit sollen Einblicke in bislang nicht beobachtbare Prozesse der Natur ermöglicht werden. „Die Anlage, die im Rahmen des geförderten Projekts entsteht, wird in einem neuen Forschungskomplex für Beschleunigerforschung bei DESY untergebracht werden“, erklärt Aßmann, der diesen Bereich im Kontext des Helmholtz Accelerator R&D (ARD) Programms leitet. Sie basiert auf einer neuartigen, lasergestützten Teilchenbeschleunigertechnik, die Röntgenstrahlung in sehr viel kürzeren Pulsen aussendet als es bisher machbar ist.

„Die Attosekunden-Kristallographie und -Spektroskopie mit Röntgenstrahlung, die von Chapman und Fromme an der Linear Coherent Light Source in Kalifornien derzeit schon im Femtosekunden-Bereich teilweise erprobt wird, kann ultraschnelle Prozesse nicht nur im Realraum, sondern auch in der Elektronen-Landschaft vollständig beschreiben“, betont Kärtner, Professor für Free-Electron Laser Studies an der Universität Hamburg, DESY-Forschungsgruppenleiter am CFEL und Principal Investigator am Hamburg Center for Ultrafast Imaging (CUI). Diese Technik werde das Verständnis von Struktur und Funktion auf der molekularen und atomaren Ebene revolutionieren und fundamentale Prozesse in Chemie und Biologie enträtseln, etwa die Dynamik der Lichtabsorption, des Elektronentransports und der Proteinstruktur bei der Photosynthese – eines der wichtigsten ungelösten Probleme der Strukturbiologie.

Damit wird die Technik auch für viele weitere Forschungsrichtungen relevant, etwa für das Center for Structural Systems Biology CSSB, das derzeit als Kooperation von acht Institutionen auf dem DESY-Campus entsteht. Mit dem AXSIS-Projekt sind Forschungsgruppen bei DESY, der Mittelschwedischen Universität und dem Massachusetts Institute of Technology (MIT) assoziiert.

Das Center for Free-Electron Laser Science CFEL ist eine Kooperation von DESY, der Universität Hamburg und der Max-Planck-Gesellschaft. Das Hamburg Center for Ultrafast Imaging CUI ist eine Kooperation der Universität Hamburg, von DESY, der Max-Planck-Gesellschaft, dem Europäischen Molekularbiologielaboratorium EMBL und dem Europäischen Röntgenlaser European XFEL.

U. Hamburg / CT

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer