Planck-Ergebnisse lassen tief blicken

  • 21. March 2013

Der Satellit liefert ein detailliertes Bild der kosmischen Hintergrundstrahlung und stützt das Standardmodell, findet aber auch Abweichungen.

Die Daten für die nun veröffentlichte Himmelskarte wurden während der ersten fünfzehneinhalb Monate der Planck-Mission gewonnen. Das Weltraumteleskop der europäischen Raumfahrtagentur ESA zeigt das älteste Licht im Universum. Dieses ging auf die Reise, als das All erst 380.000 Jahre alt war und nach dem Urknall zum ersten Mal durchsichtig wurde.

Abb.: Die Unregelmäßigkeiten der kosmischen Mikrowellenhintergrundstrahlung (CMB), wie sie mit Planck beobachtet wurden. Das Bild zeigt winzige Temperaturschwankungen in Regionen mit leicht unterschiedlicher Dichte. (Bild: ESA / Planck Collab.)

Abb.: Die von Planck beobachteten Unregelmäßigkeiten der kosmischen Mikrowellenhintergrundstrahlung (CMB) zeigen winzige Temperaturschwankungen in Regionen mit leicht unterschiedlicher Dichte. (Bild: ESA / Planck Collab.)


Damals kühlte die heiße Ursuppe aus Protonen, Elektronen und Photonen langsam ab. Neutrale Wasserstoffatome bildeten sich. Das Licht hatte freie Bahn und erlaubt es heute, ein Bild des jungen Universums zu machen. Als sich der Kosmos weiter ausdehnte und abkühlte, wurde diese Strahlung zu längeren Wellenlängen hin verschoben, sodass wir sie heute als kosmischen Mikrowellenhintergrund (CMB) bei einer Temperatur von etwa 2,7 Kelvin, entsprechend minus 270 Grad Celsius, empfangen.

Winzige Temperaturschwankungen in dieser CMB-Karte spiegeln kleinste Dichtefluktuationen wider. „Die Planck-Karte des CMB liefert uns ein extrem detailliertes Bild des ganz frühen Universums“, sagt Simon White, Co-Investigator in der Planck-Kollaboration und Direktor am Garchinger Max-Planck-Institut für Astrophysik.

White untersucht, wie sich kosmische Strukturen entwickeln und war maßgeblich daran beteiligt, das Standardmodell der Kosmologie in den 1980er-Jahren zu etablieren. „Alle Strukturen, die wir heute sehen, entstanden aus winzigen Dichtefluktuationen kurz nach dem Urknall“, so Simon White. Der Planck-Satellit wurde gebaut, um diese Fluktuationen über den gesamten Himmel mit bisher unerreichter Auflösung und Empfindlichkeit zu vermessen – mit dem Ziel, Zusammensetzung und Entwicklung des Universums vom Beginn bis heute zu bestimmen.

„Die Daten von Planck passen extrem gut zum Standardmodell der Kosmologie“, bestätigt Torsten Enßlin, der die am Max-Planck-Institut für Astrophysik angesiedelte deutsche Beteiligung an der Mission leitet. „Die kosmologischen Parameter konnten mit Planck jetzt so genau bestimmt werden wie nie zuvor. Und unsere Analyse bestand mit Bravour alle Tests gegenüber diversen anderen astronomischen Beobachtungen.“

So zeigen die Planckdaten, dass die normale Materie, aus der Galaxien, Sterne und auch unsere Erde bestehen, nur mit rund 4,9 Prozent zur Massen- und Energiedichte des Universums beiträgt. Dazu kommen etwa 26,8 Prozent Dunkle Materie, die sich lediglich über ihre Schwerkraftwirkung bemerkbar macht; deutlich mehr, als bisher für diesen mysteriösen Stoff angenommen. Andererseits ist der Anteil der Dunklen Energie – der rätselhaften Komponente, die dafür sorgt, dass sich das Universum beschleunigt ausdehnt – mit 68,3 Prozent geringer als gedacht.

Auch die Geschwindigkeit, mit der unser Universum heute expandiert, die sogenannte Hubble-Konstante, hat Planck neu bestimmt: mit 67,15 km/s/Mpc ist ihr Wert signifikant kleiner als der derzeitige Standardwert von etwa 72 km/s/Mpc. Daraus ergibt sich dann auch ein etwas höheres Weltalter von 13,82 Milliarden Jahren, bisher: 13,7 Milliarden Jahre.

Abb.: Temperaturschwankungen in der kosmischen Mikrowellenhintergrundstrahlung, die Planck bei verschiedenen Winkelskalen am Himmel gemessen hat (Leistungsspektrum). Die roten Punkte zeigen die Planckmessungen; die Fehlerbalken beinhalten sowohl Messfehler als auch eine Abschätzung der Unsicherheit aufgrund der begrenzten Anzahl von Messpunkten am Himmel. Diese „kosmische Varianz“ ist ein unvermeidbarer Effekt, der bei größeren Winkelskalen zunimmt. Grüne Kurve: beste Anpassung des Standardmodells der Kosmologie an die Planck-Daten. Hellgrüner Bereich: Vorhersagen von allen Varianten des Standardmodells, die mit den Daten am besten übereinstimmen. (Bild: ESA / Planck Collab.)

Abb.: Im Leistungsspektrum der CMB-Temperaturschwankungen bei verschiedenen Winkelskalen am Himmel zeigen die roten Punkte die Planckmessungen; die Fehlerbalken beinhalten sowohl Messfehler als auch eine Abschätzung der Unsicherheit aufgrund der begrenzten Anzahl von Messpunkten am Himmel. Diese „kosmische Varianz“ ist ein unvermeidbarer Effekt, der bei größeren Winkelskalen zunimmt. Grüne Kurve: beste Anpassung des Standardmodells der Kosmologie an die Planck-Daten. Hellgrüner Bereich: Vorhersagen von allen Varianten des Standardmodells, die mit den Daten am besten übereinstimmen. (Bild: ESA / Planck Collab.)


Allerdings gibt es aufgrund der extrem hohen Qualität der Planckdaten auch einige Ungereimtheiten, die sich nur schwer mit dem Standardmodell in Einklang bringen lassen. So sind die CMB-Fluktuationen auf großen Skalen geringer, als man das von den auf kleineren Skalen gemessenen Strukturen erwarten würde. Außerdem scheint eine Himmelsphäre etwas stärkere Strukturen aufzuweisen als die andere. Dazu passt vielleicht ein weiteres auffälliges Element: ein kalter Fleck, der sich über eine viel größere Region erstreckt, als man annehmen dürfte.

Diese Daten könnten somit eine Erweiterung des Standardmodells oder sogar eine neue Theorie nötig machen. „Auch wenn wir diese Anomalien heute noch nicht verstehen, so können wir doch ausschließen, dass es sich um einen Vordergrundeffekt handelt“, sagt Torsten Enßlin. „Insbesondere der cold spot ist schon länger bekannt; hierbei könnte es sich aber auch um eine statistische Fluktuation handeln.“

Die Wissenschaftler am Max-Planck-Institut für Astrophysik sind bereits seit Beginn der Mission an der Software-Entwicklung für die Datenreduktion beteiligt, um die Vordergrundstrahlung von Objekten wie Galaxienhaufen, Quasaren und auch unserer eigenen Milchstraße zu entfernen. Inzwischen konzentriert sich die Arbeit aber darauf, die Informationen aus der kosmischen Mikrowellenhintergrundstrahlung zu analysieren und dadurch unser Universum besser zu verstehen.

Ein Aspekt, der dabei unter anderem untersucht wurde, ist die Entdeckung und Vermessung von Galaxienhaufen durch den Sunyaev-Zeld'ovich-Effekt. Dieser SZ-Effekt ist eine charakteristische Signatur von Galaxienhaufen im kosmischen Mikrowellenhintergrund. Sie entsteht, wenn das Licht des CMB auf seinem Weg zu uns einen Galaxienhaufen passiert. Durch die verschiedenen Frequenzbänder von Planck lässt sich der SZ-Effekt sehr gut darstellen.

Rashid Sunyaev, heute Direktor am Max-Planck-Institut für Astrophysik und Co-Investigator in der Planck-Kollaboration, sagte gemeinsam mit Yakov Zel'dovich nicht nur den Effekt der Galaxienhaufen auf den CMB vorher, sondern auch die akustischen Fluktuationen im CMB selbst, die Planck jetzt so detailliert vermessen hat.

Die Planck-Ergebnisse sind für Sunyaev sehr aufregend: „Als wir vor mehr als 40 Jahren unsere Modelle für den CMB entwickelt haben, war das für uns eher ein rein theoretisches Gedankenexperiment. Wir hätten uns nie träumen lassen, dass die Messungen tatsächlich irgendwann so genau werden, dass sie nun sogar zur Entdeckung von Hunderten bisher unbekannter Galaxienhaufen eingesetzt werden können. Ein großartiger Erfolg für Planck.“

MPG / PH

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer