Hochempfindlicher Photonenjäger

  • 31. October 2012

Forscher haben eine Diode entwickelt, die Photonen schneller als bisher auslesen kann.

Schnelle und hochempfindliche optische Systeme gewinnen zunehmend an Bedeutung und werden für die unterschiedlichsten Anwendungen genutzt: zum Beispiel bei bildgebenden Verfahren in Medizin und Biologie, in der Astronomie oder bei Sicherheitstechnik in der Automobilindustrie. Oft besteht die Herausforderung darin, Bilder bei extrem wenig Licht in hoher Qualität aufzunehmen. Moderne Photodetektoren für die Bilderfassung stoßen hier meist an ihre Grenzen. Sie arbeiten häufig mit lichtempfindlichen elektronischen Bauteilen, die auf CMOS- (Complementary Metal Oxide Semiconductor) oder CCD- (Charge-Coupled Device) Bildsensoren basieren. Das Problem: Weder aktuelle CMOS- noch CCD-Systeme garantieren gleichzeitig eine schnelle und hochempfindliche Bildaufnahme in hoher Qualität, wenn es darum geht, wenige Photonen auszulesen.

Abb.: Die Bearbeitung der digitalen Bildsignale ist bereits direkt auf dem Mikrochip möglich. (Bild: Fraunhofer IMS)

Abb.: Die Bearbeitung der digitalen Bildsignale ist bereits direkt auf dem Mikrochip möglich. (Bild: Fraunhofer IMS)


Das Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS in Duisburg hat nun die CMOS-Technik weiterentwickelt und mit der Technologie, die auf Single-Photon Avalanche Photodioden (SPAD) basiert, einen hochempfindlichen Bildsensor vorgestellt. Dessen Pixelstruktur kann einzelne Photonen innerhalb nur weniger Pikosekunden zählen und ist damit tausend Mal schneller als vergleichbare Modelle. Da jedes einzelne Photon berücksichtigt wird, sind Kameraaufnahmen auch bei extrem schwachen Lichtquellen möglich.

Um das zu erreichen, nutzt der neue Bildsensor den „internen Lawinendurchbruch-Effekt“, einen photoelektrischen Verstärkereffekt. Die Anzahl der Durchbrüche entspricht dabei der Anzahl der Photonen, die das Pixel getroffen haben. Um diese Ereignisse zählen zu können, ist jedes Pixel des Sensors mit sehr genauen digitalen Zählern ausgerüstet. Gleichzeitig haben die Wissenschaftler Mikrolinsen auf jeden Sensorchip aufgebracht, die die Einstrahlung in jedem Pixel auf die photoaktive Fläche fokussieren. Ein weiterer Vorteil: Eine Bearbeitung der digitalen Bildsignale ist bereits direkt auf dem Mikrochip möglich, zusätzliche analoge Signalverarbeitung damit nicht mehr notwendig.

Das IMS hat den Sensor im Europäischen Forschungsprojekt MiSPiA (Microelectronic Single-Photon 3D Imaging Arrays for low-light high-speed Safety and Security Applications) entwickelt. Insgesamt sind europaweit sieben Partner aus Forschung und Wirtschaft an dem Projekt beteiligt. Im nächsten Schritt arbeiten die Wissenschaftler aus Duisburg an einem Prozess zur Herstellung von Sensoren, die von der Rückseite beleuchtet werden und dadurch noch leistungsfähiger sind. Gleichzeitig wird die neue Technologie bereits bei Tests im Verkehr eingesetzt. Die chipbasierten Minikameras schützen dabei unter anderem Fahrzeuge, Radfahrer und Fußgänger vor Kollisionen und Unfällen oder helfen bei der zuverlässigen Funktion von Sicherheitsgurten und Airbags.

Fraunhofer IMS / PH

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer