Heißes Plasma, kalte Kammer

  • 23. October 2012

Rekord für Leistungsabfuhr in Fusionsanlage ASDEX Upgrade liefert kraftwerksrelevante Ergebnisse.

Den Weltrekord für die Heizleistung – bezogen auf die Anlagengröße – hat die Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching erreicht: Ermöglicht hat dies eine raffinierte Steuerung. Weltweit einmalig stellt eine schnelle Rückkopplungsregelung sicher, dass einerseits die gewünschten, viele Millionen Grad heißen Hochleistungsplasmen erzeugt werden, andererseits die Wand des Plasmagefäßes nicht überlastet wird – ein wichtiges Ergebnis auf dem Weg zu einem funktionierenden Fusionskraftwerk.

Blick in das viele Millionen Grad heiße Plasma der Fusionsanlage ASDEX Upgrade in Garching. Der Plasmarand wird auf die speziell ausgerüsteten Divertor-Platten am Boden gelenkt

Abb.: Blick in das viele Millionen Grad heiße Plasma der Fusionsanlage ASDEX Upgrade in Garching. Der Plasmarand wird auf die speziell ausgerüsteten Divertor-Platten am Boden gelenkt. (Bild: IPP)

Ein Fusionskraftwerk soll – ähnlich wie die Sonne – aus der Verschmelzung von Atomkernen Energie gewinnen. Der Brennstoff – ein dünnes ionisiertes Wasserstoffgas, ein „Plasma“ – muss dazu nahezu berührungsfrei in einem Magnetfeldkäfig eingeschlossen werden. So lässt sich das ultradünne Gas auf Zündtemperaturen über 100 Millionen Grad aufheizen.

Eine der großen Herausforderungen ist es, eine verträgliche Wechselwirkung zwischen dem Plasmagefäß und dem darin schwebenden heißen Plasma zu erreichen. Besondere Aufmerksamkeit ist an den Stellen nötig, an denen das Plasma Wandkontakt hat: Ein spezielles Magnetfeld, das Divertorfeld, lenkt den äußeren Rand des ringförmigen Plasmas gezielt auf besonders robuste, gekühlte Platten am Boden des Gefäßes. Dies entfernt störende Verunreinigungen aus dem Plasma. Zugleich schont es die Gefäßwand und trennt außerdem den heißen Innenbereich des Plasmas wirksam von der kälteren Hülle: Die vom Divertorfeld geformte Randschicht hüllt das Zentralplasma wie ein wärmender Mantel ein – die Voraussetzung für gute Wärmeisolation.

Abb.: Das mit einer Wärmekamera aufgezeichnete 5,4 Sekunden-Video zeigt die Divertorplatten während zweier Plasmaentladungen mit gleich starker Plasmaheizung. Ohne Stickstoff-Argon-Kühlung (links) erhitzen sich die Platten stark, mit Kühlung (rechts) bleibt die Erwärmung im gewünschten Bereich. (Video: IPP)

Die für ein Kraftwerk angezielte Wärmebelastung der Divertorplatten liegt bei fünf Megawatt pro Quadratmeter. Um diesen Wert nicht zu überschreiten, gilt es, den Plasmarand möglichst kalt einzustellen – und dennoch im Zentrum 150 Millionen Grad zu halten. Für die nötige Wärmeisolation sorgt vor allem das schalenfömig aufgebaute Magnetfeld, das den Transport von Teilchen aus dem heißen Plasmazentrum nach außen extrem bremst. Dem wurde an ASDEX Upgrade noch nachgeholfen. Der Plasmarand wurde aktiv gekühlt: durch Einblasen kleiner Mengen von Argon in die Hauptkammer und Stickstoff direkt vor den Divertorplatten.

Die eingeblasenen Verunreinigungsteilchen werden beim Kontakt mit dem heißen Plasma zum Leuchten angeregt. So schaffen sie die Energie auf sanfte Weise als Ultraviolett- oder Röntgenlicht aus dem Plasma. Anders als im heißen Zentrum, wo diese abkühlende Wirkung von Verunreinigungen vermieden werden muss, ist sie am Rand des Plasmas sehr nützlich: Bevor die schnellen Plasmateilchen auf den Divertorplatten aufprallen, haben sie ihre Energie bereits an die Stickstoff- und Argon-Atome verloren. Die so in dem vergleichsweise kleinen Plasma deponierte Heizleistung ist Weltrekord: Bislang unerreichte 14 Megawatt pro Meter betrug die auf den Anlagenradius bezogene Heizleistung, ohne die Divertorplatten über den gewünschten Wert hinaus zu belasten.

Um in allen Phasen der zehn Sekunden langen Entladung den Wärmefluss auf die Divertorplatten exakt einzustellen, wurden Stickstoff- und Argonzufuhr unabhängig voneinander über eine ausgeklügelte – weltweit einmalige – Rückkopplungs-Regelung in Echtzeit gesteuert. Messgeräte registrieren dazu die im Hauptraum und im Divertor am Plasmarand abgestrahlte Energie, woraus der Leistungsfluss auf die Divertorplatten berechnet wird. Ist er zu hoch, wird sofort mehr Stickstoff oder Argon eingeblasen. Kommt zu wenig Leistung an, werden innerhalb von Millisekunden die Gasventile gedrosselt. Mit diesem Regelungsmeisterstück bleibt die Divertorbelastung – trotz der hohen Heizleistung von 23 Megawatt für das Drei-Milligramm-Plasma von ASDEX Upgrade – stets im Zielbereich für ein späteres Kraftwerk. Zugleich weisen die Plasmen im Zentrum die gewünschte hohe Reinheit, hohe Temperatur und gute Wärmeisolation auf. „Wir sind zuversichtlich“, sagt Projektleiter Prof. Dr. Arne Kallenbach, „dass mit diesem Verfahren auch die viel höheren Leistungsflüsse in einem späteren Kraftwerk zu bewältigen sind“.

IPP / OD

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer