Mit dem Gecko auf der Spur der „subsurface energy“

  • 24. September 2012

Wie stark zwei Materialien aneinander haften, kann von der Materialzusammensetzung tief unter den Oberflächen abhängen.

Der Gecko ist das größte Tier, das an der Zimmerdecke laufen kann. Dazu hat das Reptil unter seinen Zehen Millionen feiner Härchen, die an ihren Enden jeweils etwa hundert winzige, spatelförmige Verbreiterungen besitzen. Diese Spatel stehen in intensivem Kontakt mit der Oberfläche, die der Gecko berührt. Dabei werden sie von der Oberfläche durch molekulare Kräfte angezogen. Das Forscherteam, das bisher die Haftkraft von Bakterien und Proteinen an Oberflächen untersucht hat, konnte nun nachweisen, dass der Gecko spüren kann, wie das Material tief unter der Oberfläche zusammengesetzt ist.

Winzige Härchen an den Zehen ermöglichen es dem Gecko, an der Decke zu laufen

Abb.: Winzige Härchen an den Zehen ermöglichen es dem Gecko, an der Decke zu laufen. (Bild: Kellar Autumn)

Für ihre Experimente zur Tiefenempfindlichkeit entfernten die Wissenschaftler behutsam die Härchen von den Zehen eines Tokay-Geckos, die bei der folgenden Häutung des Tieres durch neue ersetzt werden. Sie bündelten die Härchen und klebten sie an die Spitze eines hochempfindlichen Kraftmessers. Anschließend wurde dieser über die Oberfläche von Siliziumscheiben gezogen, die unterschiedlich dick mit Siliziumdioxid beschichtet waren. Die dabei auftretenden Reibungs- und Anziehungskräfte konnten die Forscher mit hoher Genauigkeit messen.

Die Härchenbündel werden demnach umso stärker von der Siliziumoberfläche angezogen, je dünner die auflagernde Siliziumdioxid-Schicht ist. „Die molekularen Anziehungskräfte des Siliziums, die stärker sind als die des Siliziumdioxids, konnten die dünne Siliziumdioxidschicht problemlos durchdringen, obwohl diese mit zwei Nanometern immerhin etwa 20 Atomlagen dick war. Dagegen schwächte eine 150 Nanometer dicke Siliziumdioxidschicht die Anziehungskräfte des darunter liegenden Siliziums deutlich ab“, erklärt Physik-Professorin Karin Jacobs. Das gelte auch dann, wenn die ursprünglich hydrophilen, wasseranziehenden Scheiben durch eine zusätzliche dünne Beschichtung hydrophob, also wasserabweisend gemacht worden waren oder wenn die Temperatur und die Luftfeuchtigkeit verändert wurden.

Auf diesen Beobachtungen aufbauend haben die Forscher um Jacobs und ihrem Kollegen Peter Loskill eine neue Beschreibung der Adhäsionskräfte von Oberflächen entwickelt, die erstmals auch den Materialaufbau unter der Oberfläche berücksichtigt. „Bisher hat man die Adhäsionskräfte von der Oberflächenenergie hergeleitet. Sie ist eine Eigenschaft der äußersten, oberflächennahen Atomlagen bis zu einer Tiefe von etwa einem Nanometer“, sagt Jacobs. „Unsere neue Beschreibung bezieht aber zusätzlich die molekulare Van-der-Waals-Kraft ein, die aus tieferen Schichten resultiert.“

Die Experimente mit den Härchen der Gecko-Zehen haben gezeigt, dass sich durch die van der Waals-Kraft der atomare Aufbau im Innern eines Materials auch an der Materialoberfläche bemerkbar macht, und zwar durch makroskopisch nachweisbare Unterschiede der Adhäsionskräfte. Die Wissenschaftler aus Saarbrücken und Portland führen daher den neuen Begriff „subsurface energy“ ein, mit dem sie beschreiben, wie das Material unterhalb der Oberfläche zur Adhäsion beiträgt. Diese neue Herangehensweise dürfte sowohl für die Naturwissenschaften als auch für die Ingenieurwissenschaften von Bedeutung sein.

UdS

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer