„Quanten-Volt“ auf Halbleiterbasis definiert

  • 01. August 2012

PTB präsentiert eine Alternative zu Josephson-Kontakten für das neue SI-System.

Nahezu die ganze Welt der Elektronik arbeitet inzwischen mit Halbleitern. Das galt auch für die Präzisionsmesstechnik, allerdings mit Ausnahme der genauesten Normale für Spannungsmessungen, der Quanten-Spannungsnormale. Jetzt ziehen Halbleiter-Materialien auch hier ein: Nach dem Quanten-Ohm und dem Quanten-Ampere kommt das Quanten-Volt. Als Alternative zu den etablierten Josephson-Kontakten, die mithilfe von Supraleitung funktionieren, haben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) nun eine Quanten-Spannungsquelle auf der Basis von Halbleitertechnologie entwickelt.

Abb.: Prinzipskizze der Halbleiter-Quanten-Spannungsquelle. Über einem schmalen Halbleiterkanal liegen drei Kontrollelektroden G1 bis G3, von denen zwei mit Gleichspannungen (V1, V2)angesteuert werden. Die zusätzliche Wechselspannungsmodulation VAC an der Elektrode G1 führt zur Erzeugung des quantisierten Stroms, der im anschließenden Quanten-Hall-Widerstand eine quantisierte Spannung Vout erzeugt. (Bild: PTB)

Abb.: Prinzipskizze der Halbleiter-Quanten-Spannungsquelle. Über einem schmalen Halbleiterkanal liegen drei Kontrollelektroden G1 bis G3, von denen zwei mit Gleichspannungen (V1, V2)angesteuert werden. Die zusätzliche Wechselspannungsmodulation VAC an der Elektrode G1 führt zur Erzeugung des quantisierten Stroms, der im anschließenden Quanten-Hall-Widerstand eine quantisierte Spannung Vout erzeugt. (Bild: PTB)

Grundlage für die neue Halbleiter-Quanten-Spannungsquelle ist eine Einzelelektronenpumpe, die von einer Wechselspannung der Frequenz f angetrieben wird und einen Strom der Größe I = e ∙ f erzeugt. Die Einzelelektronenpumpe kombinierten die Forscher auf einer integrierten Halbleiterschaltung mit einem Quanten-Hall-Widerstand. Das Ergebnis ist eine quantisierte Ausgangsspannung von Vout = (h/e) ∙ f. Interessanterweise ist diese Ausgangsspannung im Prinzip identisch mit der einer supraleitenden Josephson-Schaltung, beruht allerdings auf gänzlich unterschiedlichen physikalischen Effekten.

Zum Betrieb der Quanten-Spannungsquelle sind zwei Gleichspannungen und eine Hochfrequenz-Wechselspannung zur Kontrolle der Einzelelektronenpumpe nötig. Die Halbleiterschaltung zeigt eine robuste Quantisierung der Ausgangsspannung bis zu Frequenzen von einigen Gigahertz. Auf diese Weise können Ausgangsspannungen bis zu 10 Mikrovolt erzeugt werden. „Diese Ausgangsspannung wollen wir in Zukunft noch deutlich steigern“, sagt PTB-Physiker Frank Hohls. Sein Team möchte sie um den Faktor 1000 erhöhen, etwa durch die Parallelschaltung mehrerer Einzelelektronenpumpen sowie durch Serienschaltung mehrerer Quanten-Hall-Widerstände auf dem Halbleiterchip. „Außerdem können wir damit quantisierte Werte der drei wichtigsten elektrischen Einheiten Stromstärke, Spannung und Widerstand erzeugen – und das mit einer einzigen Apparatur“, erläutert Hohls.

Für eine besonders interessante Anwendung könnte die neue Spannungsquelle mit den herkömmlichen Josephson-Kontakten kombiniert werden. So könnte durch den Vergleich dieser beiden unterschiedlichen Quantennormale (mit höchster Genauigkeit) das sogenannte quantenmetrologische Dreieck geschlossen werden. Das wäre ein großer Nutzen für das geplante neue Internationale Einheitensystem SI, das ausschließlich auf Fundamentalkonstanten beruhen wird.

PTB / PH

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer