Unter Druck und Temperatur

  • 07. May 2004


Erde und Mars weisen in ihrem Inneren eine sehr unterschiedliche Eisenverteilung auf. Jetzt weiß man warum.

Bayreuth - Nach gängiger Vorstellung haben sich sowohl die Erde als auch der Mars aus einer ursprünglich an Eisenoxiden reichen Materie gebildet. Warum weisen dann aber die beiden Planeten in ihrem Inneren eine so unterschiedliche Verteilung von Eisen auf? Die jetzt von David C. Rubie, Christine K. Gessmann und Daniel J. Frost in der international renommierten Fachzeitschrift Nature publizierten Forschungsergebnisse aus dem Bayerischen Geoinstitut der Universität Bayreuth liefern eine mögliche Antwort darauf.

Sowohl die Erde als auch der Mars besitzen einen zentralen Kern aus eisenreichem Metall, der von einem Mantel aus silikatischer Gesteinsmaterie umgeben wird. Beide Planeten waren in ihrer frühen Bildungsgeschichte von glutflüssiger Gesteinsschmelze in Form tiefer "Magma-Ozeane" bedeckt. In diesem Magma sank das schwerere Eisen ab und formte jeweils den zentralen Planetenkern, der von einem an Metallen ausgelaugten Mantel umgeben wird. Im relativen Vergleich zum Mars weist die Erde jedoch einen größeren Kern auf, der Marskern ist dafür eisenreicher.

Die Oberfläche von Erde oder Mars ist von einem tiefen "Magma-Ozean" aus glutflüssigem Gestein bedeckt, der von Meteoriten bombardiert wird. Darunter folgen Mantel und Kern der Planeten. Die schwarzen Komponenten symbolisieren Metalle, die zum Zentrum des Planeten absinken und sich im Kern anreichern. (Quelle: Bayreuth)

Die neuen Ergebnisse lassen vermuten, dass aufgrund höherer Drücke und Temperaturen im irdischen Magmaozean ein größerer Sauerstoffanteil in gelöster Form in den Erdkern überführt wurde als im Mars. Dadurch verblieb im Erdmantel weniger Eisenoxid als im Marsmantel. Folglich entstand in der Erde ein deutlich größerer Eisenkern als im Mars.

Frühere Forschungsarbeiten sahen allein erhöhte Temperaturen als Ursache für die höhere Sauerstoffkonzentration im geschmolzenen metallischen Eisen an. Jedoch führt interner Druck zu einem gegensätzlichen Effekt, wie Rubie und seine Kollegen argumentieren. Obwohl sich Druck und Temperatur gegenseitig auszugleichen scheinen, stellen die Größe des Planeten und die hypothetische Tiefe der Magma-Ozeane, die die Planeten bedecken, entscheidende Faktoren dar.

Die Bayreuther Forscher bestimmten die Mengen an Eisenoxid, die bei der Planetenbildung in metallischem Eisen gelöst wurden. Für den Fall, dass unser noch junger Planet von einem 1800 km tiefen Ozean aus aufgeschmolzenem Gestein bedeckt gewesen wäre, hätten die Temperaturen am Boden dieses Magma-Sees über 3000 °C betragen. Diese Temperatur hätte ausgereicht, um Eisenoxid aus dem Mantel herauszulösen und den großen Eisenkern der Erde zu formen sowie in den äußeren Schalen unseres Planeten einen durchschnittlichen Anteil an Eisenoxid von nur 8 % zurückzulassen.

"Der Mars ist kleiner als die Erde, er besitzt nur ein Zehntel der Erdmasse, sein innerer Druck beträgt in jeder angenommenen Tiefe lediglich etwa ein Drittel des Drucks in der Erde", führt Carl Agee in einem Begleitartikel in Nature unter News and Views aus. Der geringere innere Druck bedeutet, dass der Magma-Ozean des Mars nicht die notwendige Temperatur entwickeln konnte, um einen größeren Anteil an metallischem Eisen zu bilden, was wiederum zu einem kleineren Kern und zu einem größeren Eisenoxidanteil von etwa 18 % in den Oberflächenschichten des Roten Planeten führte.

Quelle: Uni Bayreuth

Weitere Infos:
Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer