Magnetnadeln schlagen Saltos

  • 27. November 2006



Ein neu entdeckter Mechanismus erlaubt es, kleinste magnetische Strukturen (Vortex-Kerne) mit schwachen Magnetfeldern schnell und verlustfrei umzuschalten.

Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart haben einen neuen Mechanismus entdeckt, mit dem man kleinste magnetische Strukturen - so genannte Vortex-Kerne - mit schwachen Magnetfeldern schnell und verlustfrei umschalten kann. Bislang brauchte man dazu sehr starke Magnetfelder, was einen großen technischen Aufwand bedeutet. Die neue Methode eröffnet möglicherweise neue Möglichkeiten in der magnetischen Datenspeicherung.

Kleinste Magnetstrukturen, die wenige Millionstel Millimetern messen, stoßen seit etwa zehn Jahren auf ein wachsendes Interesse in Wissenschaft und Technik - vor allem wegen möglicher Anwendungen in Magnetspeichern. In solchen Strukturen tritt ein faszinierendes quantenmechanisches Phänomen auf: Der Vortex-Kern, der schon seit 40 Jahren theoretisch vorhergesagt wurde, aber erst vor vier Jahren im Experiment nachgewiesen werden konnte. In kleinen magnetischen Plättchen schließen sich die magnetisierten Bereiche oft zu ebenen geschlossenen Magnetkreisen zusammen, die man Vortices nennt (Singular: Vortex). Stellt man sich vor, man würde mit einem atomgroßen Kompass in einem Vortex spazieren gehen, dann würde die Kompassnadel immer in die Ebene zeigen - es sei denn, man nähert sich der Mitte des Vortex, seinem Kern: Dort erheben sich die atomaren magnetischen Kompassnadeln aus der Oberfläche und es entsteht auf kleinstem Raum (auf einem Radius von etwa 20 Atomen) das größte im Material mögliche Magnetfeld.

Die Magnetnadel kann im Vortex-Kern entweder nach oben oder nach unten zeigen (Abb. 1). Will man diese Orientierung zur magnetischen Datenspeicherung nutzen, hat man aber mit der für Vortexstrukturen typischen enormen Stabilität zu kämpfen: Bisher brauchte man sehr hohe externe Magnetfelder von etwa einem halben Tesla, um die Orientierung des Vortex-Kerns umzudrehen. Das ist etwa ein Drittel des Feldes, das der stärkste Dauermagnet liefern kann.

Abb. 1: Dynamisches Schalten des Vortex-Kerns: Im oberen Teil sind die „Magnetnadeln“ des Vortex-Kerns schematisch wiedergegeben, links mit Orientierung nach unten, rechts nach oben. Der untere Teil zeigt diese beiden Magnetisierungsrichtungen des Vortex-Kerns in zwei Bildern, aufgenommen mit einem magnetischen Raster-Röntgenmikroskop an der Advanced Light Source in Berkeley, Kalifornien, USA. In der Mitte ist der bipolare Magnetfeldpuls dargestellt (250 MHz, in der Spitze 1,5 Milli-Tesla), der das Umschalten des Vortex-Kerns bewirkt. (Bild: Max-Planck-Institut für Metallforschung)

Forscher am Max-Planck-Institut für Metallforschung fanden nun eine elegante Lösung, Vortex-Kerne viel einfacher umzuschalten. Mit Hilfe der zeitaufgelösten magnetischen Raster-Röntgenmikroskopie, die durch die Gruppe von Hermann Stoll, Abteilung Schütz, am Institut entwickelt wurde, entdeckten sie einen bislang unbekannten Mechanismus: Das dynamische Schalten des Vortex-Kerns. Durch einem kurzen Magnetpuls (Abb. 1) wird zunächst ein Magnetfeld senkrecht zum Vortex aufgebaut; damit wird die ganze Struktur zu einer kollektiven Bewegung der Spins angeregt. So bildet sich, wie mikromagnetische Simulationen zeigen (Abb. 2), am Rand des ursprünglichen Vortex - fast ohne Energieaufwand - eine Magnetisierung in entgegen gesetzter Richtung. Daraus entsteht ein Vortex-Antivortex-Paar. Der Antivortex löscht den ursprünglichen Vortex aus und am Ende bleibt nur ein Vortex mit entgegen gesetzter Polarisation übrig.

Abb. 2: Mikromagnetische Simulation des Schaltens des Vortex-Kerns durch einen kurzen Magnetpuls: (a) Ausgangszustand: Vortex-Kern nach unten; (b) zuerst ist eine zusätzliche Magnetisierung nach oben sichtbar; (c) daraus formiert sich eine Doppelspitze: Ein Vortex-Antivortex-Paar; (d) Endzustand: Nach Auslöschung des ursprünglichen Vortex durch den Antivortex bleibt ein Vortex-Kern nach oben übrig. (Bild: Max-Planck-Institut für Metallforschung)

So gelang es den Wissenschaftlern zusammen mit Forschern der Universität Gent, der Advanced Light Source in Berkeley, Kalifornien, des Forschungszentrums Jülich und den Universitäten Regensburg und Bielefeld, den Vortex-Kern mit rund 300-mal schwächeren, aber sehr kurzen magnetischen Pulsen effektiv und gezielt zu schalten.

Möglicherweise kann dieser erstmals beobachtete Schaltmechanismus für ein völlig neues magnetisches Speicherkonzept genutzt werden. Die Richtungen der kleinen, nanoskopischen magnetischen Nadeln definieren hierbei ein digitales Bit, das extrem stabil ist gegen oft unvermeidbare äußere Einflüsse wie Aufheizung oder störende Magnetfelder. Mit dem neu entdeckten dynamischen Effekt lässt sich der Vortex-Kern leicht schalten, und zwar fast verlustfrei und vor allem extrem schnell.

Das Projekt wurde unterstützt durch die Max-Planck-Gesellschaft, die Deutsche Forschungsgemeinschaft über das Schwerpunktprogramm „Ultrafast Magnetisation Processes“ und die Leitung des Office of Science, Office of Basic Energy Science des US Department of Energy.

Quelle: MPG / [AL]

Weitere Infos:

  • Originalveröffentlichung:
    B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss , C. H. Back , G. Schütz, Magnetic vortex core reversal by excitation with short bursts of an alternating field, Nature 444, 461 (2006).
    http://dx.doi.org/10.1038/nature05240
  • Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.:
    http://www.mpg.de
  • Max-Planck-Institut für Metallforschung, Stuttgart:
    http://www.mf.mpg.de
Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer