Schnelle Ionen für die Medizin

  • 01. August 2008

Forscher am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) konnten in einer theoretischen Studie zeigen, dass Ionen mittels extrem stark fokussierter Petawatt-Laserstrahlen direkt auf Energien beschleunigt werden können, wie sie für eine Tumortherapie erforderlich sind. Die Modellrechnungen ergaben ferner, dass die für den therapeutischen Einsatz geforderte Qualität der Ionenstrahlen für eine geeignet gewählte Polarisation des Laserlichts erreichbar ist. Falls es gelingt, die zu beschleunigenden Ionen in genügend großer Dichte bereitzustellen, könnte die Technik der Laserbeschleunigung in der Zukunft eine wesentlich kostengünstigere Alternative zu herkömmlichen Beschleunigersystemen darstellen.

Strahlen aus beschleunigten schweren geladenen Teilchen stehen inzwischen an mehreren Orten weltweit für die Tumortherapie (Hadrontherapie) zur Verfügung. Im Herbst dieses Jahres werden am neu fertig gestellten Heidelberger Ionenstrahl-Therapiezentrum (HIT) die ersten Patienten behandelt werden. Die besondere Eigenschaft dieser Teilchen, eine genau definierte Reichweite im Gewebe bei gegebener Energie, ermöglicht eine präzise Bestrahlung in einem Rasterscanverfahren. Dieses schont das umgebende Gewebe und ermöglicht die Behandlung nicht operabler, kompliziert geformte bösartige Tumoren. Anlagen zur Hadrontherapie bestehen aus einem konventionellen Beschleuniger, welcher die Ionen (in der Regel Protonen oder Kohlenstoffkerne) auf Energien von bis zu einigen 100 Megaelektronenvolt bringt und einem aufwändigen Strahlführungssystem (Gantry), welches eine Bestrahlung aus allen Raumrichtungen für das o. g. Rasterscanverfahren ermöglicht. Bedingt durch die hohe Energie und Masse der Teilchen benötigt man zu deren Ablenkung sehr starke Magnetfelder, weshalb ein typischer Gantry-Aufbau eine Masse von mehreren 100 Tonnen hat und zugleich den Strahl mit höchster Präzision justieren muss.

Abb. 1: (a) Schematische Darstellung eines konventionellen Bestrahlungsplatzes an einem Beschleuniger mit magnetischer Strahlführung. (b) Alternative Methode der direkten Beschleunigung von Ionen in einem hochintensiven fokussierten Laserstrahl. (Quelle: MPI für Kernphysik)

Da dies einen nicht unerheblichen finanziellen Aufwand darstellt, gibt es Überlegungen, für die Zukunft weniger aufwändige, alternative Beschleunigungs- und Strahlführungssysteme zu entwickeln. Ein viel versprechender Ansatz ist die Beschleunigung geladener Teilchen in starken Laserfeldern, zumal die Lasertechnologie einen der dynamischsten Fortschritte in der gesamten Physik zu verzeichnen hat. So werden in naher Zukunft kompakte Anlagen mit Laserleistungen im Petawattbereich zur Verfügung stehen. Die Beschleunigung der Ionen könnte dann in unmittelbarer Nähe des Bestrahlungsplatzes aus der gewünschten Richtung erfolgen; die aufwändige magnetische Strahlführung würde durch ein erheblich leichteres optisches System für den Laserstrahl ersetzt.

Forscher der Gruppe von Christoph Keitel am Max-Planck-Institut für Kernphysik Heidelberg haben nun in Modellrechnungen untersucht, auf welchem Wege mittels extrem starker Lichtfelder Ionenstrahlen mit den für Hadrontherapie erforderlichen Eigenschaften erzeugt werden können. Kernpunkte sind dabei eine ausreichend große Beschleunigung für verfügbare Laserintensitäten sowie eine hohe Energieschärfe (besser als 1 %) für das Rasterscanverfahren. Bisherige Methoden der Beschleunigung in lasergenerierten extrem dichten Plasmen erreichen zwar schon recht hohe Energien sind aber mit breiten Energieverteilungen behaftet. Stattdessen wurde nun die direkte Beschleunigung von bereits erzeugten Ionen theoretisch modelliert.

Abb. 2: Berechnete Ionenbahnen (blau) aus einer Simulation für die Beschleunigung im Fokus eines radial polarisierten Laserstrahls. Die roten Pfeile illustrieren die radialen und longitudinalen Feldvektoren und die Ausbreitungsrichtung (v. l. n. r.) des Strahls. (Quelle: MPI für Kernphysik)

Betrachtet wurden sowohl linear als auch radial polarisierte Laserstrahlen einer Leistung von 0,1 bis 10 Petawatt, die auf einen winzigen Brennpunkt gebündelt werden, der kleiner als die Wellenlänge des Lasers ist. Salamin, Harman und Keitel konnten zeigen, dass speziell das radial polarisierte Laserlicht (Axicon-Laser) besonders gute Beschleunigungseigenschaften besitzt. Solches Licht wurde zwar noch nicht in dem gewünschten Intensitätsbereich erzeugt, fundamentale Hindernisse stehen dem aber nicht entgegen. Für Kohlenstoffkerne ergab sich bei 10 Petawatt Laserleistung eine maximale Energie von etwa 1500 MeV bei einer Energieschärfe von 0,8 %. Ionen, die von linear polarisierten Lasern beschleunigt werden, besitzen nahezu dieselben charakteristischen Strahleigenschaften. Ein weiterer Vorteil linear polarisierter Laser ist der rechteckförmige Querschnitt der erzeugten Strahlen, das zu einer gleichmäßigeren Tumorbestrahlung führt. Derartige Lasersysteme für die erforderlichen hohen Intensitäten sind bereits vorhanden.

Die Erforschung der Beschleunigungsmechanismen ist nur der erste Schritt. Eine wesentliche Herausforderung besteht in der Entwicklung geeigneter Quellen zur Erzeugung der zu beschleunigenden Ionen in der erforderlichen Dichte. Herkömmliche Ionenquellen und -strahlapparaturen sind davon noch viele Größenordnungen entfernt. Eine alternative Möglichkeit könnten Laser-Ionenquellen darstellen, in denen ein Laser zunächst ein Festkörpertarget ionisiert, um es dann mit dem eigentlichen Beschleunigungslaser zu bestrahlen.

Quelle: MPI für Kernphysik

Weitere Infos

Share |

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer