Spektakuläre Klimaforschung in der Arktis: Längstes Klimaarchiv der terrestrischen Arktis geborgen

  • 03. June 2009


In den vergangenen sechs Monaten hat ein internationales Wissenschaftlerteam aus Russland, Deutschland, USA und Österreich ein Tiefbohrprogramm im äußersten Nordosten Russlands durchgeführt, um hunderte Meter Seesedimente, Impaktbrekzie und dauerhaft gefrorenen Boden zu bergen. Diese ermöglichen neue Einblicke in die Klimageschichte der Arktis, die Kraterbildung des Elgygytgynsees und in die Permafrostdynamik. Mit den ersten Ergebnissen der Bohrkampagne wurde Anfang Mai 2009 ein wichtiger Meilenstein erreicht. Die gewonnenen Bohrkerne werden in den nächsten zwei Jahren wesentliche offene Fragen der arktischen Erdgeschichte klären können.

Am äußersten Rand Nordostsibiriens, rund 900 Kilometer westlich der Beringstraße und 100 Kilometer nördlich des arktischen Polarkreises (67°30' N, 172°05' E) liegt der Elgygytgynsee, der vor 3,6 Mio. Jahren durch einen Meteoriteneinschlag entstand. Der See ist im Gegensatz zu den meisten anderen Gebieten dieser Breitengrade nie vergletschert gewesen – seine kontinuierlich am Grund des Sees abgelagerten Sedimente stellen somit ein unschätzbares Klimaarchiv der Arktis dar.

Internationale Wissenschaftler verschiedener Disziplinen haben sich zum Ziel gesetzt, dieses Archiv zu bergen. Nach einer Vorbereitungsdauer von elf Jahren begann Ende vergangenen Jahres eine groß angelegte Tiefbohrkampagne. Unter schwierigsten Bedingungen wurde an diesem abgelegenen Ort eine Infrastruktur für bis zu 40 Personen geschaffen – Unterkünfte, sanitäre Anlagen und Versorgungseinheiten.

„Bei Temperaturen bis zu -45°C benötigen Menschen und Technik ausreichend Energie, bspw. auch für die Lagerung der Bohrkerne bei konstanten positiven Temperaturen“, so Martin Melles von der Universität zu Köln, Projektleiter des El’gygytgyn Drilling Projects auf deutscher Seite. Die für die Seebohrungen eingesetzte Bohrtechnik wiegt ca. 70 Tonnen, eine große Herausforderung für die sichere Positionierung auf dem Seeeis.

Ende vergangenen Jahres wurden zunächst mit Hilfe einer russischen Bohrfirma aus dem 260 Kilometer entfernten Pewek Permafrostbohrungen durchgeführt. Die Ergebnisse können sich sehen lassen: Trotz starker Schneestürme und tiefer Temperaturen erreichte das Team eine Bohrtiefe von 142 Metern. Die erbohrten Kerne enthalten Informationen zur Geschichte des Permafrostes und dessen Einfluss auf die Seesedimentation. „Man kann an den Bohrkernen auch Seespiegelschwankungen ablesen“, so Georg Schwamborn von der Forschungsstelle Potsdam des Alfred-Wegener-Instituts, der die Permafrostbohrungen leitete. Von großer Bedeutung ist auch die Installation einer Temperaturmesskette in dem Bohrloch durch die Wissenschaftler aus Potsdam. Sie dokumentiert die aktuell stattfindenden Veränderungen im Permafrostboden. Deren Verständnis ist für die Klimaforschung von hohem Wert, da eine Freisetzung der im Permafrost gebundenen Gase beim Auftauen den Treibhauseffekt weiter verstärken könnte.

Die gerade abgeschlossenen Seebohrungen sind nicht minder erfolgreich verlaufen: Bis in insgesamt 315 Metern unter dem Seeboden wurden Seesedimente erbohrt, davon die obersten 110 Meter überlappend, um die beim ersten Bohren verbliebenen Lücken im Archiv zu schließen. Erste Ergebnisse deuten an, dass in den Bohrkernen die Klima- und Umweltgeschichte der vergangenen 3,6 Mio. Jahre weitestgehend dokumentiert ist. So zeigen Messungen der magnetischen Eigenschaften im oberen Teil der Sedimentabfolge zahlreiche Warm- und Kaltzeiten, mit unterschiedlichen Intensitäten und Ausprägungen. „Aus detaillierten Untersuchungen der Übergänge von Kalt- zu Warmzeiten können wir lernen, wie die Arktis auf Klimaerwärmungen in der Vergangenheit reagiert hat, und damit prognostizieren, wie sie in Zukunft reagieren wird“, erläutert Catalina Gebhardt vom Alfred-Wegener-Institut in Bremerhaven. Mit den tiefsten Seesedimentkernen wurde dagegen bis in die Zeit des Pliozäns, vor mehr als 2,6 Mio. Jahren vorgestoßen. „Diese Sedimente sind von besonderer Bedeutung, da das Klima zur damaligen Zeit deutlich wärmer war als heute“ so Martin Melles, „Damit können die Erkenntnisse aus diesen Sedimenten als Modellfall für die Arktis in einigen Jahrzehnten dienen, wenn dort die besonders starke Klimaerwärmung, wie von Klimamodellen vorhergesagt, stattfinden wird“.

Wichtiges Ziel der Seebohrungen war auch die Erbohrung der Impaktbrekzie. Dieses beim Meteoriteneinschlag entstandene Trümmergestein wurde ab 315 Metern unterhalb des Seebodens angetroffen. Die mit Bohrungen bis 200 Meter in die Brekzie gewonnenen Kerne sind von unschätzbarem Wert. „Wir erwarten neue Erkenntnisse nicht nur zur Flugbahn und Zusammensetzung des Meteoriten, sondern insbesondere auch zu Reaktionen der dort verbreiteten vulkanischen Gesteine auf den Einschlag“, so Christian Koeberl von der Universität Wien, der die Bearbeitung der Impaktgesteine durch ein internationales Team koordiniert. Die Erkenntnisse dienen der Risikoabschätzung in anderen Gebieten mit entsprechenden Gesteinsformationen.

Die nahezu 3,5 Tonnen Kerne, die 2009 erbohrt wurden, werden Anfang Juni zunächst zum russischen Arktis- und Antarktisforschungsinstitut (AARI) nach St. Petersburg gebracht. Von dort aus werden die Kerne aus der gesamten Bohrkampagne nach Deutschland transportiert: Die Permafrostkerne an das Alfred-Wegener-Institut für Polar- und Meeresforschung, die Seesedimente an die Universität zu Köln und die Impaktbrekzie nach Potsdam zum ICDP.
In den kommenden zwei Jahren finden die Auswertungen statt. Insgesamt werden bis zu 30 Gastwissenschaftler neben den deutschen Forschern und zahlreicher Studenten an den Kernen arbeiten.

Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung


Weitere Infos:


AL

Share |

Newsletter

Haben Sie Interesse am kostenlosen wöchentlichen oder monatlichen pro-physik.de-Newsletter? Zum Abonnement geht es hier.

COMSOL NEWS 2018

thumbnail image: Messen Sie <i>M</i><sup>2</sup> in weniger als einer Minute

Messen Sie M2 in weniger als einer Minute

Das M2-Lasermessgerät Ophir BeamSquared 2.0 ermittelt die optische Güte des Laserstrahls schnell und präzise. Mehr

Webinar

Vom Raytracing-Modell zum digitalen Prototypen

  • 22. November 2018

Raytracing ist die Stan­dard­methode zur Ent­wick­lung von opti­schen Sys­te­men und wird ein­ge­setzt, um diese Sys­teme vir­tuell auszu­legen und Vor­her­sagen über ihre opti­schen Ei­gen­schaf­ten zu ma­chen. Ein­satz­be­rei­che sol­cher digi­ta­ler Pro­to­ty­pen sind bei­spiels­weise die Ent­wick­lung von Laser- oder Ab­bil­dungs­sys­te­men.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer