XUV-Laser im Westentaschen-Format

  • 02. November 2016

Leistungsstarke XUV-Laser dank Frequenzkonversion auch in Laborgröße möglich.

Was passiert im Inneren von Atomen und Molekülen, wenn sie eine chemische Bindung eingehen? Wie sieht es aus, wenn Licht mit optischen Nano­materialien interagiert? Wollen Forscher chemische Reaktionen in Echtzeit verfolgen oder die Bewegung von Ladungs­trägern beobachten, nutzen sie heute intensive Extrem-Ultra­violette (XUV) Strahlung. Doch die stammt nicht aus einer gewöhnlichen Gas­entladungs­lampe. „Für solche Anwendungen braucht es kohärentes, extrem kurz gepulstes XUV-Licht“, betont Jens Limpert von der Friedrich-Schiller-Universität Jena. Erzeugt werden solche XUV-Pulse zumeist in riesigen Teilchen­beschleunigern, etwa dem XFEL in Hamburg, dessen 3,4 Kilometer lange unterirdische Anlage gerade erst in Betrieb genommen wurde, oder in Synchrotrons mit mehreren hundert Metern Durchmesser.

Abb.: Mit einem neuen Versuchsaufbau lassen sich ultrakurze Röntgenpulse erzeugen lassen. (Bild: J.-P. Kasper, FSU)

Abb.: Mit dem neuen Versuchsaufbau lassen sich ultrakurze Röntgenpulse erzeugen. (Bild: J.-P. Kasper, FSU)

Doch der Zugang für Forscher zu diesen leistungsstarken Groß­anlagen ist begrenzt und nicht alle wissenschaftlichen Frage­stellungen lassen sich damit hinreichend untersuchen, was die Entwicklung von vergleichs­weise „handlichen“ Laser­systemen motiviert. Nun stellen Jenaer Physiker einen Versuchs­aufbau vor, mit dem sich ultrakurze, intensive XUV-Pulse in praktisch jedem Optik-Labor produzieren lassen.

Diese Publikation zeigt, wie sich XUV-Pulse mit deutlich höherer Effizienz erzeugen lassen, als das bislang mit Systemen dieser Größen­ordnung möglich war. Dazu fokussieren die Forscher Laser­pulse in einen doppel­brechenden Kristall, wobei sich die Frequenz des ursprünglich infra­roten Lichts verdoppelt. Das Ergebnis sind Laserpulse im grünen Wellen­längen­bereich. Diese werden in einem zweiten Schritt – der kaskadierten Frequenz­konversion – erneut fokussiert, woraus noch höher­frequente Pulse im XUV resultieren.

Auf diese Weise entstehen spektral schmalbandige und kohärente XUV-Pulse mit einer Leistung im Milliwatt-Bereich. Ihre Wellenlänge beträgt nur noch 57 Nanometer. „Übliche Systeme kommen lediglich auf ein Hundertstel dieser Leistung, während unsere Faserlaser-basierten Systeme typischer­weise zirka 100 Mikrowatt Durchschnitts­leistung liefern – diese neuartige Methode ist nun nochmals eine Größen­ordnung besser“, betont Doktorand Robert Klas, der die neuartige Quelle gemeinsam mit seinen Kollegen im Labor realisiert hat. Dank dieser Technik seien die XUV-Quellen nun auch für praktische Anwendungen einsetzbar, welche die Helmholtz-Nachwuchs­gruppe von Jan Rothhardt verfolgt – etwa für neue bildgebende Verfahren, um drei­dimensionale Strukturen mit einer Auflösung von wenigen Dutzend Nanometern sichtbar zu machen und so völlig neue Einblicke in die Nanowelt zu ermöglichen.

FSU / DE

Share |

Newsletter

Haben Sie Interesse am kostenlosen wöchentlichen oder monatlichen pro-physik.de-Newsletter? Zum Abonnement geht es hier.

COMSOL NEWS 2018

COMSOL Days

Lesen Sie, wie Ingenieure in einer Vielzahl von Branchen präzise digitale Prototypen erstellen, um die Grenzen der Technologie zu überschreiten und den Bedarf an physischen Prototypen zu reduzieren, sowie Simulationsanwendungen zu erstellen, mit denen Kollegen und Kunden weltweit neue Ideen testen können.

comsol.de/c/7bzn

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer